Page 116 - 《软件学报》2021年第12期
P. 116

3780                                Journal of Software  软件学报 Vol.32, No.12, December 2021

          [7]    Ahmed U, Lin JCW, Srivastava G, et al. A load balance multi-scheduling model for OpenCL kernel tasks in an integrated cluster.
             Soft Computing, https://doi.org/10.1007/s00500-020-05152-8
          [8]    Amulu LM, Ramraj R. Combinatorial meta-heuristics approaches for DVFS-enabled green clouds. The Journal of Supercomputing,
             2020,76:5825−5834.
          [9]    Chen XJ, Shi C, Zhou AM, et al. Multiobjective evolutionary algorithm based on hybrid individual selection mechanism. Ruan Jian
             Xue Bao/Journal of  Software,  2019,30(12):3651−3664 (in Chinese  with English  abstract). http://www.jos.org.cn/1000-9825/
             5602.htm [doi: 10.13328/j.cnki.jos.005602]
         [10]    Zheng JH, Dong NJ, Ruan G, et al. High-dimensional multi-objective optimization strategy based on decision space oriented search.
             Ruan Jian  Xue  Bao/Journal of Software, 2019,30(9):2686−2704  (in  Chinese with English abstract).  http://www.jos.org.cn/1000-
             9825/5842.htm [doi: 10.13328/j.cnki.jos.005842]
         [11]    Wang JL, Gong B, Liu H, et al. Model and algorithm of energy-efficiency aware scheduling for green heterogeneous computing.
             Ruan Jian  Xue  Bao/Journal of Software, 2016,27(9):2414−2425  (in  Chinese with English abstract).  http://www.jos.org.cn/1000-
             9825/4849.htm [doi: 10.13328/j.cnki.jos.004849]
         [12]    Liang B, Dong XS, Wang YF, et al. A low-power task scheduling algorithm for heterogeneous cloud computing. The Journal of
             Supercomputing, 2020,76:7290−7314.
         [13]    Chen WH, Xie GQ, Li RF, et al. Execution cost minimization scheduling algorithms for deadlineconstrained parallel applications
             on heterogeneous clouds. Cluster Computing—The Journal of Networks Software Tools and Applications, https://doi.org/10.1007/
             s10586-020-03151-w
         [14]    Muhuri PK, Biswas SK. Bayesian optimization algorithm for multi-objective scheduling of time and precedence constrained tasks
             in heterogeneous multiprocessor systems. Applied Soft Computing Journal, 2020,92:106274.
         [15]    Nik SSM,  Naghibzadeh M, Sedaghat  Y. Cost-driven  workfow scheduling on the  cloud  with deadline  and reliability  constraints.
             Computing, 2020,102:477−500. https://doi.org/10.1007/s00607-019-00740-5
         [16]    Abazari F,  Analoui M, Takabi  H,  et al. MOWS:  Multi-objective  workflow  scheduling in cloud computing based  on  heuristic
             algorithm. Simulation Modelling Practice and Theory, 2019,93:119−132.
         [17]    Rizvi N, Ramesh D. HBDCWS: Heuristic-based budget and deadline constrained workflow scheduling approach for heterogeneous
             clouds. Soft Computing, https://doi.org/10.1007/s00500-020-05127-9
         [18]    Pandey V, Saini P. A heuristic method towards deadline-aware energy-efficient mapreduce scheduling problem in Hadoop YARN.
             Cluster Computing—The Journal of Networks Software Tools and Applications, https://doi.org/10.1007/s10586-020-03146-7
         [19]    Taheri G, Khonsari A, Entezari-Maleki R, et al. A hybrid algorithm for task scheduling on heterogeneous multiprocessor embedded
             systems. Applied Soft Computing Journal, 2020,91:106202.
         [20]    Aziza H, Krichen S. A hybrid genetic algorithm for scientific workflow scheduling in cloud environment. Neural Computing and
             Applications, https://doi.org/10.1007/s00521-020-04878-8
         [21]    Xie Y, Wu JZ. Multi-objective constraint task scheduling algorithm for multi-core processors. Cluster Computing—The Journal of
             Networks Software Tools and Applications, 2019,22:953−964.
         [22]    He ZZ, Zhou JZ, Qin H, et al. Long-term joint scheduling of hydropower station group in the upper reaches of the Yangtze River
             using partition parameter adaptation differential evolution. Engineering Applications of Artificial Intelligence, 2019, 81:1−13.
         [23]    Song YJ, Ma X,  Li XJ,  et al. Learning-guided  nondominated sorting  genetic algorithm II  for multi-objective  satellite  range
             scheduling problem. Swarm and Evolutionary Computation, 2019,49:194−205.

         附中文参考文献:
          [9]  陈晓纪,石川,周爱民,等.混合个体选择机制的多目标进化算法.软件学报,2019,30(12):3651−3664. http://www.jos.org.cn/1000-
             9825/5602.htm [doi: 10.13328/j.cnki.jos.005602]
         [10]  郑金华,董南江,阮干,等.决策空间定向搜索的高维多目标优化策略.软件学报,2019,30(9):2686−2704. http://www.jos.org.cn/
             1000-9825/5842.htm [doi: 10.13328/j.cnki.jos.005842]
         [11]  王静莲,龚斌,刘弘,等.支持绿色异构计算的能效感知调度模型与算法.软件学报,2016,27(9):2414−2425. http://www.jos.org.cn/
             1000-9825/4849.htm [doi: 10.13328/j.cnki.jos.004849]
   111   112   113   114   115   116   117   118   119   120   121