Page 111 - 《软件学报》2021年第12期
P. 111

王静莲  等:软硬件节能原理深度融合之绿色异构调度算法                                                      3775


             3:      Do in parallel for each island    /*Obtain coarse-grained model, one of the parallel models*/
             4:         ι=ι+1;
             5:         Do in parallel    /*Obtain master-slave model, another parallel model*/
             6:            Evaluate genome fitness on the dynamic equation (Eq.(7)) in the current subpopulation:
                                 +
                      Γ(Ch r (τ))(r∈R ,Ch r (τ)∈Ξ(τ));
                                                      +
             7:            Sort the individuals fitness: Γ(Ch r (τ))(r∈R ,Ch r (τ)∈Ξ(τ)), and save the fittest individual Ch elite (ι)
                      in the external memory;
             8:            Perform local search strategies to ensure the Cesaro average convergence of the irreducible
                      aperiodic Markov chain of the population sequence;
             9:            Perform clonal operation;
             10:           Perform gene operations, such as crossover and mutation defined as Section 2.3;
             11:        End Do in parallel
             12:        If ι=τ (migration interval) then
             13:           Create Ψ δ  for the current subpopulation;
             14:           Send Ψ δ  to the neighboring subpopulation;
             15:           Receive Ψ δ  from the neighboring subpopulation;
             16:           Construct the founding subpopulation Ξ;
             17:           Select Θ individuals into Ξ;
                                                   τ
             18:           Replace the subpopulation Ψ δ  with  Ψ ;
                                                   δ
             19:        End If
             20:     End Do in parallel
             21: End While
             22: Output the best individual.
         2.5   算法时间复杂度分析

             设在每一代进化中,种群 FeaNonPop 和 ModNonPop 的规模都为θ,克隆倍数为 з,变量的维数为£,约束维数
         为 Ћ,目标函数维数为 m,则:
             •   在每次克隆种群 ModNonPop 所用的复杂度为 O(зθ);
             •   交叉操作所需复杂度为 O(£зθ/2);
             •   变异操作所需复杂度为 O(£зθ);
             •   计算种群 Pop 基因亲和度值的时间复杂度为 O(£зθ);
             •   合并种群 ModNonPop 所需复杂度为 O(£θ+Ћθ+mθ);
             •   修正种群 Pop 中个体模因值所需复杂度为 O(3m(з+1)θ+2Ћ(з+1)θ);
                                                                       2 2
             •   选取并更新可行非支配解集所需复杂度为 O((2з+6+mз+2m)θ+m(з+2) θ +(з+2)(m+1)θlog 2 ((з+2)θ));
                                                                  2 2
             •   选取并更新非支配解集所需复杂度为 O((m+1)(з+1)θ+θ+m(з+1) θ +(m+1)(з+1)θlog 2 ((з+1)θ)).
             因此,算法 GHSA_di/II 的复杂度为多项式时间(polynomial time).
         3    仿真实验及结果

             实验在山东省高性能计算中心进行,中心拥有先进异构集群、存储和网络资源,可满足日益增长的云研究
         及应用服务需求.同时,中心长期为各种数据密集应用提供服务,可就多种输入实例展开绿色驱动调度研究,以
         保证其实际通用性.具体包括如下配置.
             •   曙光天潮高性能计算集群;
   106   107   108   109   110   111   112   113   114   115   116