Page 96 - 《软件学报》2021年第11期
P. 96

3422                                Journal of Software  软件学报 Vol.32, No.11, November 2021

                [36]    Deng ZY, Zhu XS, Cheng DB, Zong M, Zhang SC. Efficient KNN classification algorithm for big data. Neurocomputing, 2016,195:
                     143−148. [doi: 10.1016/j.neucom.2015.08.112]
                [37]     Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L. Deep contextualized word representations. In: Proc.
                     of the 2018 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.
                     Stroudsburg: Association for Computational Linguistics, 2018. 2227−2237.
                [38]     Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional transformers for language understanding. In:
                     Proc. of the 2019 Conf. of the  North American  Chapter of  the  Association for Computational  Linguistics:  Human  Language
                     Technologies. Stroudsburg: Association for Computational Linguistics, 2019. 4171−4186.
                [39]     Sun Y,  Wang  SH, Li YK,  Feng  SK, Chen XY, Zhang H, Tian X, Zhu DX, Tian H, Wu H. ERNIE: Enhanced Representation
                     through Knowledge Integration. arXiv preprint arXiv:1904.09223, 2019.
                [40]     Sarwar B, Karypis G, Konstan J, Riedl J. Item-based collaborative filtering recommendation algorithms. In: Proc. of the 10th Int’l
                     Conf. on World Wide Web. New York: ACM, 2001. 285−295.
                [41]     Arora G, Kumar A, Devre GS, Ghumare PA. Movie recommendation system based on user’s similarity. Int’l Journal of Computer
                     Science and Mobile Computing, 2014,3(4):765−770.
                [42]     Ekstrand MD, Riedl JT, Konstan JA. Collaborative filtering recommender systems. Foundations and Trends in Human—Computer
                     Interaction, 2011,4(2):81−173. [doi: 10.1561/1100000009]

                 附中文参考文献:
                  [1]  马晓星,刘譞哲,谢冰,余萍,张天,卜磊,李宣东.软件开发方法发展回顾与展望.软件学报,2019,30(1):3−21. http://www.jos.org.cn/
                     1000-9825/5650.htm [doi: 10.13328/j.cnki.jos.005650]
                  [2]  王怀民,毛晓光,丁博,沈洁,罗磊,任怡.系统软件新洞察.软件学报,2019,30(1):22−32. http://www.jos.org.cn/1000-9825/5648.htm
                     [doi: 10.13328/j.cnki.jos.005648]
                  [3]  黄震华,张佳雯,田春岐,孙圣力,向阳.基于排序学习的推荐算法研究综述.软件学报,2016,27(3):691−713. http://www.jos.org.cn/
                     1000-9825/4948.htm [doi: 10.13328/j.cnki.jos.004948]
                  [7]  李琳,朱阁,解庆,苏畅,杨征路.一种潜在特征同步学习和偏好引导的推荐方法.软件学报,2019,30(11):3382−3396. http://www.jos.
                     org.cn/1000-9825/5542.htm [doi: 10.13328/j.cnki.jos.005542]
                 [12]  罗海滨,范玉顺,吴澄.工作流技术综述.软件学报,2000,11(7):899−907. http://www.jos.org.cn/jos/article/abstract/20000706?st=
                     article_issue
                 [13]  李红臣,史美林.工作流模型及其形式化描述.计算机学报,2003,26(11):1456−1463.
                 [17]  徐光祐,陶霖密,史元春,张翔.普适计算模式下的人机交互.计算机学报,2007,30(7):1041−1053.
                 [18]  程时伟,朱安杰,范菁.面向大屏幕目标选择的眼动跟踪与手势交互.软件学报,2018,29:75−85. http://www.jos.org.cn/1000-9825/
                     18019.htm
                 [34]  杜超,王志海,江晶晶,孙艳歌.基于显露模式的数据流贝叶斯分类算法.软件学报,2017,28(11):2891−2904. http://www.jos.org.cn/
                     1000-9825/5350.htm [doi: 10.13328/j.cnki.jos.005350]
                 [35]  陈琪,张莉,蒋竞,黄新越.一种基于支持向量机和主题模型的评论分析方法.软件学报,2019,30(5):1547−1560. http://www.jos.org.
                     cn/1000-9825/5731.htm [doi: 10.13328/j.cnki.jos.005731]



                              袁敏(1977-),男,博士,副教授,CCF 专业                    徐冰青(1999-),女,学士,主要研究领域为
                              会员,主要研究领域为服务计算,智能系                           大数据分析,边缘计算.
                              统,软件工程,大数据分析,形式化验证.



                              陈卓(1996-),男,硕士生,主要研究领域为
                              大数据分析,边缘计算.
   91   92   93   94   95   96   97   98   99   100   101