Page 332 - 《软件学报》2021年第11期
P. 332

3658                                Journal of Software  软件学报 Vol.32, No.11, November 2021

                [21]    Zhu WT, Huang YF, Zeng L, Chen XM, Liu Y, Qian Z, Du N, Fan W, Xie XH. AnatomyNet: Deep learning for fast and fully
                     automated whole—Volume  segmentation of head  and neck  anatomy.  Medical Physics, 2019,46(2):576−589. [doi: 10.1002/mp.
                     13300]
                [22]    Shelhamer  E,  Long J,  Darrell  T. Fully  convolutional networks for semantic segmentation. IEEE  Trans. on Pattern  Analysis  and
                     Machine Intelligence, 2017,39(4):640−651. [doi: 10.1109/TPAMI.2016.2572683]
                [23]    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556,
                     2014.
                [24]    Szegedy C, Liu W,  Jia YQ,  Sermanet  P, Reed  S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich  A. Going  deeper  with
                     convolutions. In: Proc.  of  the  IEEE Conf.  on Computer Vision and  Pattern Recognition.  2015.  1−9. [doi:  10.1109/CVPR.2015.
                     7298594]
                [25]    Jia D, Wei D, Richard S, Lijia L, Kai L, Li FF. ImageNet: A large-scale hierarchical image database. In: Proc. of the IEEE Conf. on
                     Computer Vision and Pattern Recognition. 2009. 248−255. [doi: 10.1109/CVPR.2009.5206848]
                [26]    Jia YQ, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: Convolutional architecture for
                     fast feature embedding. In: Proc. of the 22Nd ACM Int’l Conf. on Multimedia. 2014. 675−678. [doi: 10.1145/2647868.2654889]
                [27]    Guo S, Li T, Wang K, Zhang C, Kang H. A lightweight neural network for hard exudate segmentation of fundus image. In: Proc. of
                     the Int’l Conf. on Artificial Neural Networks. 2019. 189−199. [doi: 10.1007/978-3-030-30508-6_16]

                 附中文参考文献:
                 [3]  庞浩,王枞.用于糖尿病视网膜病变检测的深度学习模型.软件学报,2017,28(11):3018−3029. http://www.jos.org.cn/1000-9825/
                    5332.htm [doi: 10.13328/j.cnki.jos.005332]
                 [5]   梁礼明,刘博文,杨海龙,石霏,陈新建.基于多特征融合的有监督视网膜血管提取.计算机学报,2018,41(11):2566−2580. [doi:  10.
                     11897/SP.J.1016.2018.02566]



                              郭松(1991-),男,博士,主要研究领域为医                      康宏(1973-),男,博士,讲师,CCF 专业会
                              疗影像分析,深度学习.                                  员 , 主要 研究领 域为数 据库技 术 , 机器
                                                                           学习.



                              李涛(1977-),男,博士,教授,博士生导师,                     张玉军(1976-),男,博士,研究员,博士生
                              CCF 杰出会员,主要研究领域为异构计算,                        导师,CCF 高级会员,主要研究领域为计算
                              机器学习,智能物联网.                                  机网络.



                              李宁(1994-),男,硕士,主要研究领域为医                      王恺(1979-),男,博士,副教授,CCF 专业
                              疗影像分析,深度学习.                                  会员,主要研究领域为人工智能,计算机视
                                                                           觉,机器学习.
   327   328   329   330   331   332   333   334   335   336   337