Page 331 - 《软件学报》2021年第11期
P. 331
郭松 等:基于多任务学习的眼底图像红色病变点分割 3657
[2] Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J.
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs.
Journal of the American Medical Association, 2016,316(22):2402−2410. [doi: 10.1001/jama.2016.17216]
[3] Pang H, Wang C. Deep learning model for diabetic retinopathy detection. Ruan Jian Xue Bao/Journal of Software, 2017,28(11):
3018−3029 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5332.htm [doi: 10.13328/j.cnki.jos.005332]
[4] Guo S, Wang K, Kang H, Zhang YJ, Gao YQ, Li T. BTS-DSN: Deeply supervised neural network with short connections for retinal
vessel segmentation. Int’l Journal of Medical Informatics, 2019,126:105−113. [doi: 10.1016/j.ijmedinf.2019.03.015]
[5] Liang LM, Liu BW, Yang HL, Shi F, Chen XJ. Supervised blood vessel extraction in retinal images based on multiple feature
fusion. Chinese Journal of Computers, 2018,41(11):2566−2580 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2018.
02566]
[6] Pellegrini E, Robertson G, Macgillivray T, Hemert JV, Trucco E. A graph cut approach to artery/vein classification in ultra-
widefield scanning laser ophthalmoscopy. IEEE Trans. on Medical Imaging, 2018,37(2):516−526. [doi: 10.1109/TMI.2017.
2762963]
[7] Fu HZ, Cheng J, Xu YW, Wong DWK, Liu J, Cao XC. Joint optic disc and cup segmentation based on multi-label deep network
and polar transformation. IEEE Trans. on Medical Imaging, 2018,37(7):1597−1605. [doi: 10.1109/TMI.2018.2791488]
[8] Guo S, Li T, Kang H, Li N, Zhang YJ, Wang K. L-Seg: An end-to-end unified framework for multi-lesion segmentation of fundus
images. Neurocomputing, 2019,349:52−63. [doi: 10.1016/j.neucom.2019.04.019]
[9] Guo S, Wang K, Kang H, Liu T, Gao YQ, Li T. Bin loss for hard exudates segmentation in fundus images. Neurocomputing,
2020,392:314−324. [doi: 10.1016/j.neucom.2018.10.103]
[10] Van GM, Van GB, Hoyng C, Theelen T, Sanchez C. Fast convolutional neural network training using selective data sampling:
Application to hemorrhage detection in color fundus images. IEEE Trans. on Medical Imaging, 2016,35(5):1273−1284. [doi: 10.
1109/TMI.2016.2526689]
[11] Xie S, Tuo ZW. Holistically-nested edge detection. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2015. 1395−1403. [doi:
10.1109/ICCV.2015.164]
[12] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Proc. of the Int’l Conf.
on Medical Image Computing and Computer Assisted Intervention. 2015. 234−241. [doi: 10.1007/978-3-319-24574-4_28]
[13] Mo J, Zhang L, Feng Y. Exudate-based diabetic macular edema recognition in retinal images using cascaded deep residual
networks. Neurocomputing, 2018,290:161−171. [doi: 10.1016/j.neucom.2018.02.035]
[14] Porwal P, Pachade S, Kokare M, Deshmukh G, Son J, et al. IDRiD: Diabetic retinopathy—Segmentation and grading challenge.
Medical Image Analysis, 2020,59:101561. [doi: 10.1016/j.media.2019.101561]
[15] Clément P, Renaud D, Farida C. A novel weakly supervised multitask architecture for retinal lesions segmentation on fundus
images. IEEE Trans. on Medical Imaging, 2019,38(10):2432−2444. [doi: 10.1109/TMI.2019.2906319]
[16] Tan JH, Fujita H, Sivaprasad S, Bhandary SV, Rao AK, Chua KC, Acharya UR. Automated segmentation of exudates,
haemorrhages, microaneurysms using single convolutional neural network. Information Sciences, 2017,420:66−76. [doi: 10.1016/ j.
ins.2017.08.050]
[17] Chudzik P, Majumdar S, Calivá F, AlDiri B, Hunter A. Microaneurysm detection using fully convolutional neural networks.
Computer Methods and Programs in Biomedicine, 2018,158:185−192. [doi: 10.1016/j.cmpb.2018.02.016]
[18] Yang YH, Li T, Li W, Wu HS, Fan W, Zhang WS. Lesion detection and grading of diabetic retinopathy via two-stages deep
convolutional neural networks. In: Proc. of the Int’l Conf. on Medical Image Computing and Computer Assisted Intervention. 2017.
533−540. [doi: 10.1007/978-3-319-66179-7_61]
[19] Lin TY, Goyal P, Girshick R, He KM, Dollár P. Focal loss for dense object detection. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 2020,42(2):318−327. [doi: 10.1109/TPAMI.2018.2858826]
[20] Rahman MA, Wang Y. Optimizing intersection-over-union in deep neural networks for image segmentation. In: Proc. of the Int’l
Symp. on Visual Computing. 2016. 234−244. [doi: 10.1007/978-3-319-50835-1_22]