Page 331 - 《软件学报》2021年第11期
P. 331

郭松  等:基于多任务学习的眼底图像红色病变点分割                                                       3657


                 [2]    Gulshan V,  Peng L,  Coram M,  Stumpe  MC,  Wu D, Narayanaswamy A,  Venugopalan  S, Widner K, Madams T, Cuadros J.
                     Development  and  validation of  a deep learning  algorithm for detection  of diabetic  retinopathy in retinal fundus photographs.
                     Journal of the American Medical Association, 2016,316(22):2402−2410. [doi: 10.1001/jama.2016.17216]
                 [3]    Pang H, Wang C. Deep learning model for diabetic retinopathy detection. Ruan Jian Xue Bao/Journal of Software, 2017,28(11):
                     3018−3029 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5332.htm [doi: 10.13328/j.cnki.jos.005332]
                 [4]    Guo S, Wang K, Kang H, Zhang YJ, Gao YQ, Li T. BTS-DSN: Deeply supervised neural network with short connections for retinal
                     vessel segmentation. Int’l Journal of Medical Informatics, 2019,126:105−113. [doi: 10.1016/j.ijmedinf.2019.03.015]
                 [5]    Liang LM,  Liu  BW, Yang  HL, Shi  F,  Chen  XJ. Supervised blood vessel extraction in retinal images based on  multiple feature
                     fusion. Chinese Journal of Computers, 2018,41(11):2566−2580 (in Chinese with English abstract). [doi: 10.11897/SP.J.1016.2018.
                     02566]
                 [6]    Pellegrini E, Robertson G,  Macgillivray T, Hemert JV,  Trucco  E.  A graph cut  approach to artery/vein  classification  in ultra-
                     widefield scanning laser ophthalmoscopy. IEEE Trans. on Medical Imaging, 2018,37(2):516−526. [doi: 10.1109/TMI.2017.
                     2762963]
                 [7]    Fu HZ, Cheng J, Xu YW, Wong DWK, Liu J, Cao XC. Joint optic disc and cup segmentation based on multi-label deep network
                     and polar transformation. IEEE Trans. on Medical Imaging, 2018,37(7):1597−1605. [doi: 10.1109/TMI.2018.2791488]
                 [8]    Guo S, Li T, Kang H, Li N, Zhang YJ, Wang K. L-Seg: An end-to-end unified framework for multi-lesion segmentation of fundus
                     images. Neurocomputing, 2019,349:52−63. [doi: 10.1016/j.neucom.2019.04.019]
                 [9]    Guo  S, Wang K, Kang H, Liu T,  Gao YQ, Li T. Bin loss  for  hard exudates  segmentation in  fundus images. Neurocomputing,
                     2020,392:314−324. [doi: 10.1016/j.neucom.2018.10.103]
                [10]    Van GM, Van  GB, Hoyng  C,  Theelen  T, Sanchez  C. Fast  convolutional  neural network training using selective data sampling:
                     Application to hemorrhage detection in color fundus images. IEEE Trans. on Medical Imaging, 2016,35(5):1273−1284. [doi: 10.
                     1109/TMI.2016.2526689]
                [11]    Xie S, Tuo ZW. Holistically-nested edge detection. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2015. 1395−1403. [doi:
                     10.1109/ICCV.2015.164]
                [12]    Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Proc. of the Int’l Conf.
                     on Medical Image Computing and Computer Assisted Intervention. 2015. 234−241. [doi: 10.1007/978-3-319-24574-4_28]
                [13]    Mo J,  Zhang  L,  Feng  Y.  Exudate-based diabetic  macular  edema recognition in retinal images using  cascaded deep residual
                     networks. Neurocomputing, 2018,290:161−171. [doi: 10.1016/j.neucom.2018.02.035]
                [14]    Porwal P, Pachade S, Kokare M, Deshmukh G, Son J, et al. IDRiD: Diabetic retinopathy—Segmentation and grading challenge.
                     Medical Image Analysis, 2020,59:101561. [doi: 10.1016/j.media.2019.101561]
                [15]    Clément P, Renaud  D, Farida C.  A  novel  weakly supervised  multitask  architecture for retinal lesions segmentation on fundus
                     images. IEEE Trans. on Medical Imaging, 2019,38(10):2432−2444. [doi: 10.1109/TMI.2019.2906319]
                [16]    Tan JH, Fujita  H, Sivaprasad S,  Bhandary SV,  Rao AK,  Chua  KC, Acharya UR.  Automated segmentation of  exudates,
                     haemorrhages, microaneurysms using single convolutional neural network. Information Sciences, 2017,420:66−76. [doi: 10.1016/ j.
                     ins.2017.08.050]
                [17]    Chudzik P, Majumdar S, Calivá F, AlDiri  B,  Hunter A.  Microaneurysm detection using fully  convolutional neural networks.
                     Computer Methods and Programs in Biomedicine, 2018,158:185−192. [doi: 10.1016/j.cmpb.2018.02.016]
                [18]    Yang YH, Li T, Li W, Wu HS,  Fan W, Zhang WS. Lesion  detection and  grading of  diabetic retinopathy  via two-stages  deep
                     convolutional neural networks. In: Proc. of the Int’l Conf. on Medical Image Computing and Computer Assisted Intervention. 2017.
                     533−540. [doi: 10.1007/978-3-319-66179-7_61]
                [19]    Lin TY, Goyal  P, Girshick R, He  KM, Dollár P. Focal  loss for  dense object detection.  IEEE  Trans. on Pattern  Analysis  and
                     Machine Intelligence, 2020,42(2):318−327. [doi: 10.1109/TPAMI.2018.2858826]
                [20]    Rahman MA, Wang Y. Optimizing intersection-over-union in deep neural networks for image segmentation. In: Proc. of the Int’l
                     Symp. on Visual Computing. 2016. 234−244. [doi: 10.1007/978-3-319-50835-1_22]
   326   327   328   329   330   331   332   333   334   335   336