Page 235 - 《软件学报》2021年第11期
P. 235
欧阳佳 等:面向频繁项集挖掘的本地差分隐私事务数据收集方法 3561
[16] Ouyang J, Yin J, Liu SP. Differential privacy publishing strategy for distributed transaction data. Ruan Jian Xue Bao/Journal of
Software, 2015,26(6):1457−1472 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4576.htm [doi: 10.13328/j.
cnki.jos.004576]
[17] Su S, Xu S, Cheng X, et al. Differentially private frequent itemset mining via transaction splitting. IEEE Trans. on Knowledge and
Data Engineering, 2015,27(7):1875−1891.
[18] Li N, Qardaji WH, Su D, et al. PrivBasis: Frequent itemset mining with differential privacy. Proc. of the VLDB Endowment,
2012,5(11):1340−1351.
[19] Lee J, Clifton C. Top-k frequent itemsets via differentially private FP-trees. In: Proc. of the 20th ACM SIGKDD Int’l Conf. on
Knowledge Discovery and Data Mining. New York: ACM, 2014. 931−940.
[20] Xiong X, Chen F, Huang P, et al. Frequent itemsets mining with differential privacy over large-scale data. IEEE Access, 2018,6:
28877−28889.
[21] Fanti G, Pihur V, Erlingsson U. Building a RAPPOR with the unknown: Privacy-preserving learning of associations and data
dictionaries. Proc. on Privacy Enhancing Technologies, 2016, 2016(3):41−61.
[22] Erlingsson Ú, Pihur V, Korolova A. RAPPOR: Randomized aggregatable privacy-preserving ordinal response. In: Proc. of the 2014
ACM SIGSAC Conf. on Computer and Communications Security (CCS 2014). New York: ACM, 2014. 1054−1067.
[23] Warner SL. Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical
Association, 1965,60(309):63−69.
[24] Sun C, Fu Y, Zhou J, et al. Personalized privacy-preserving frequent itemset mining using randomized response. The Scientific
World Journal, 2014,2014:Article ID 686151. http://dx.doi.org/10.1155/2014/686151
[25] Evfimievski A, Srikant R, Agrawal R, et al. Privacy preserving mining of association rules. Information Systems, 2004,29(4):
343−364.
[26] Ding B, Kulkarni J, Yekhanin S. Collecting telemetry data privately. In: Proc. of the Neural Information Processing Systems.
Curran Associates, 2017. 3574−3583.
[27] Kairouz P, Bonawitz K, Ramage D. Discrete distribution estimation under local privacy. In: Proc. of the 33rd International
Conference on International Conference on Machine Learning, 2016, 48:5662−5676.
[28] Duchi JC, Jordan MI, Wainwright MJ. Local privacy and minimax bounds: Sharp rates for probability estimation. In: Proc. of the
27th Annual Conf. on Neural Information Processing Systems. Nevada: Curran Associates, 2013. 1529−1537.
[29] Andrés M, Bordenabe N, Chatzikokolakis K, et al. Geo-indistinguishability: Differential privacy for location-based systems. In:
Proc. of the 2013 ACM SIGSAC Conf. on Computer & Communications Security. New York: ACM, 2013. 901−914.
[30] Bordenabe N, Chatzikokolakis K, Palamidessi C. Optimal geo-indistinguishable mechanisms for location privacy. In: Proc. of the
2014 ACM SIGSAC Conf. on Computer and Communications Security. New York: ACM, 2014. 251−262.
[31] Hsu J, Khanna S, Roth A. Distributed private heavy hitters. In: Proc. of the 39th international colloquium conference on Automata,
Languages, and Programming. New York: ACM, 2012. 461−472.
[32] Bassily R, Smith A. Local, private, efficient protocols for succinct histograms. New York: ACM, 2015. 127−135.
[33] Zhan Q, Yin Y, Ting Y, et al. Heavy hitter estimation over set-valued data with local differential privacy. In: Proc. of the Computer
and Communications Security. New York: ACM, 2016. 192−203.
[34] Mehmet Emre G, Acar T, Stacey T, et al. Secure and utility-aware data collection with condensed local differential privacy. arXiv
preprint arXiv:1905.06361, 2019.
[35] Lee J, Clifton C. Differential identifiability. In: Proc. of the 18th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining. New York: ACM, 2012. 1041−1049.
[36] Ouyang J, Xiao ZH, Liu SP, et al. Heuristic privacy parameter setting strategy for differential privacy model. Application Research
of Computers, 2019,36(1):250−253 (in Chinese with English abstract).
[37] Evfimievski A, Gehrke J, Srikant R. Limiting privacy breaches in privacy preserving data mining. In: Proc. of the 22th ACM
SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems. New York: ACM, 2003. 211−222.
[38] Wang W, Carreira-Perpiñán MÁ. Projection onto the probability simplex: An efficient algorithm with a simple proof, and an
application. arXiv preprint arXiv:1309.1541, 2013.