Page 76 - 《软件学报》2021年第10期
P. 76
3048 Journal of Software 软件学报 Vol.32, No.10, October 2021
6 总结与未来工作
本文首次将序列到序列预训练任务引入到 AMR 文本生成任务中,提出了 3 种简单、有效的预训练任务和
两种微调方法.实验结果表明:本文的方法能够有效地提升 AMR 文本生成的性能,并在两份 AMR 数据集中均达
到了目前最优结果,其中,当使用质量较高的自动标注语料时,实验中在 AMR2.0 上的最高结果达到了 42.22.
在使用预训练模型后,本文模型在有较多节点的 AMR 图中依旧可以达到较高的性能;但在重入节点数量
较大时,本文模型还有很大的提升空间.在未来的工作中,将尝试解决线性化 AMR 导致重入节点结构信息丢失
的问题.
References:
[1] Banarescu L, Bonial C, Cai S, et al. Abstract meaning representation for sembanking. In: Proc. of the 7th Linguistic Annotation
Workshop and Interoperability with Discourse. 2013. 178186.
[2] Tamchyna A, Quirk C, Galley M. A discriminative model for semantics-to-string translation. In: Proc. of the 1st Workshop on
Semantics-driven Statistical Machine Translation. 2015. 3036.
[3] Mitra A, Baral C. Addressing a question answering challenge by combining statistical methods with inductive rule learning and
reasoning. In: Proc. of the 30th AAAI Conf. on Artificial Intelligence. 2016. 27792785.
[4] Li X, Nguyen T H, Cao K, et al. Improving event detection with abstract meaning representation. In: Proc. of the 1st Workshop on
Computing News Storylines. 2015. 1115.
[5] Xu K, Wu L, Wang Z, et al. Graph2seq: Graph to sequence learning with attention-based neural networks. arXiv Preprint arXiv:
1804.00823, 2018.
[6] Flanigan J, Dyer C, Smith NA, et al. Generation from abstract meaning representation using tree transducers. In: Proc. of the 2016
Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016.
731739.
[7] Song L, Peng X, Zhang Y, et al. AMR-to-text generation with synchronous node replacement grammar. In: Proc. of the 55th
Annual Meeting of the Association for Computational Linguistics (Vol.2: Short Papers). 2017. 713.
[8] Pourdamghani N, Knight K, Hermjakob U. Generating English from abstract meaning representations. In: Proc. of the 9th Int’l
Natural Language Generation Conf. 2016. 21.
[9] Ferreira TC, Calixto I, Wubben S, et al. Linguistic realisation as machine translation: Comparing different MT models for
AMR-to-text generation. In: Proc. of the 10th Int’l Conf. on Natural Language Generation. 2017. 110.
[10] Zhu J, Li J, Zhu M, et al. Modeling graph structure in transformer for better AMR-to-text generation. In: Proc. of the 2019 Conf. on
Empirical Methods in Natural Language Processing and the 9th Int’l Joint Conf. on Natural Language Processing. 2019.
54625471.
[11] Peters M, Neumann M, Iyyer M, et al. Deep contextualized word representations. In: Proc. of the 2018 Conf. of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies (Vol.1: Long Papers). 2018.
22272237.
[12] Radford A, Wu J, Child R, et al. Language models are unsupervised multitask learners. OpenAI Blog, 2019,1(8):9.
[13] Devlin J, Chang MW, Lee K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proc. of
the 2019 Conf. of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
(Vol.1: Long and Short Papers). 2019. 41714186.
[14] Li Z, Hoiem D. Learning without forgetting. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017,40(12):29352947.
[15] Konstas I, Iyer S, Yatskar M, et al. Neural AMR: Sequence-to-sequence models for parsing and generation. In: Proc. of the 55th
Annual Meeting of the Association for Computational Linguistics (Vol.1: Long Papers). 2017. 146157.
[16] Cao K, Clark S. Factorising AMR generation through syntax. In: Proc. of the 2019 Conf. of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Vol.1: Long and Short Papers). 2019. 21572163.
[17] Marcheggiani D, Perez-Beltrachini L. Deep graph convolutional encoders for structured data to text generation. In: Proc. of the
11th Int’l Conf. on Natural Language Generation. 2018. 19.