Page 320 - 《软件学报》2021年第10期
P. 320
3292 Journal of Software 软件学报 Vol.32, No.10, October 2021
[20] Woo S, Park JC, Lee JY, Kweon IS. CBAM: Convolutional block attention module. In: Proc. of the European Conf. on Computer
Vision. 2018. 319.
[21] Drucker H, Cortes C, Jackel LD, Lecun Y, Vapnik V. Boosting and other ensemble methods. Neural Computation, 1994,6(6):
12891301.
[22] Huang G, Liu Z, Weinberger KQ, Maaten L. Densely connected convolutional networks. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition. 2017. 47004708.
[23] Fan ZW, Wu HF, Fu XY, Huang Y, Ding XH. Residual-guide network for single image deraining. In: Proc. of the 26th ACM Int’l
Conf. on Multimedia. 2018. 17511759.
[24] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error visibility to structural similarity. IEEE Trans.
on Image Processing, 2004,13(4):600612.
[25] Liu GC, Lin ZC, Yan SC, Sun J, Yu Y, Ma Y. Robust recovery of subspace structures by low-rank representation. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 2012,35(1):171184.
[26] Xiao JS, Wang W, Zou WT, Tong L, Lei JF. Image deraining algorithm based on depth of filed and sparse coding. Chinese Journal
of Computers, 2019,42(9):20242034 (in Chinese with English abstract).
[27] He KM, Zhang XY, Ren SQ, Sun J. Identity mappings in deep residual networks. In: Proc. of the European Conf. on Computer
Vision. Cham: Springer-Verlag, 2016. 630645.
[28] Fu XY, Liang BR, Huang Y, Ding XH, Paisley J. Lightweight pyramid networks for image deraining. The IEEE Trans. on Neural
Networks and Learning Systems, 2019, 114.
[29] Johnson J, Alahi A, Li FF. Perceptual losses for real-time style transfer and super-resolution. In: Proc. of the European Conf. on
Computer Vision. Cham: Springer-Verlag, 2016. 694711.
[30] Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 2002,
3(3):201215.
[31] Wang F, Jiang MQ, Qian C, Yang S, Li C, Zhang HG, Wang XG, Tang XO. Residual attention network for image classification. In:
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 31563164.
[32] He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In: Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition. 2016. 770778.
[33] Takikawa T, Acuna D, Jampani V, Fidler S. Gated-SCNN: Gated shape CNNs for semantic segmentation. In: Proc. of the IEEE
Int’l Conf. on Computer Vision. 2019. 52295238.
[34] Qian R, Robby TT, Yang WH, Su JJ, Liu JY. Attentive generative adversarial network for raindrop removal from a single image. In:
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 24822491.
[35] Zhang H, Sindagi V, Patel VM. Image de-raining using a conditional generative adversarial network. IEEE Trans. on Circuits and
Systems for Video Technology, 2019, 110.
附中文参考文献:
[17] 李金晶.基于卷积神经网络的单幅图像去雨研究[硕士学位论文].马鞍山:安徽工业大学,2020.
[26] 肖进胜,王文,邹文涛,童乐,雷俊锋.基于景深和稀疏编码的图像去雨算法.计算机学报,2019,42(9):20242034.
张学锋(1978-),男,博士,教授,主要研究 李金晶(1994-),男,硕士,主要研究领域为
领域为 模式 识 别 , 虚拟 现实 技术 , 人工 计算机视觉,机器学习,虚拟现实.
智能.