Page 320 - 《软件学报》2021年第10期
P. 320

3292                                 Journal of Software  软件学报 Vol.32, No.10, October 2021

                [20]    Woo S, Park JC, Lee JY, Kweon IS. CBAM: Convolutional block attention module. In: Proc. of the European Conf. on Computer
                     Vision. 2018. 319.
                [21]    Drucker H, Cortes C,  Jackel LD, Lecun Y, Vapnik V. Boosting and  other ensemble methods.  Neural  Computation,  1994,6(6):
                     12891301.
                [22]    Huang G, Liu Z, Weinberger KQ, Maaten L. Densely connected convolutional networks. In: Proc. of the IEEE Conf. on Computer
                     Vision and Pattern Recognition. 2017. 47004708.
                [23]    Fan ZW, Wu HF, Fu XY, Huang Y, Ding XH. Residual-guide network for single image deraining. In: Proc. of the 26th ACM Int’l
                     Conf. on Multimedia. 2018. 17511759.
                [24]    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error visibility to structural similarity. IEEE Trans.
                     on Image Processing, 2004,13(4):600612.
                [25]    Liu GC, Lin ZC, Yan SC, Sun J, Yu Y, Ma Y. Robust recovery of subspace structures by low-rank representation. IEEE Trans. on
                     Pattern Analysis and Machine Intelligence, 2012,35(1):171184.
                [26]    Xiao JS, Wang W, Zou WT, Tong L, Lei JF. Image deraining algorithm based on depth of filed and sparse coding. Chinese Journal
                     of Computers, 2019,42(9):20242034 (in Chinese with English abstract).
                [27]    He KM, Zhang XY, Ren SQ, Sun J. Identity mappings in deep residual networks. In: Proc. of the European Conf. on Computer
                     Vision. Cham: Springer-Verlag, 2016. 630645.
                [28]    Fu XY, Liang BR, Huang Y, Ding XH, Paisley J. Lightweight pyramid networks for image deraining. The IEEE Trans. on Neural
                     Networks and Learning Systems, 2019, 114.
                [29]    Johnson J, Alahi A, Li FF. Perceptual losses for real-time style transfer and super-resolution. In: Proc. of the European Conf. on
                     Computer Vision. Cham: Springer-Verlag, 2016. 694711.
                [30]    Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 2002,
                     3(3):201215.
                [31]    Wang F, Jiang MQ, Qian C, Yang S, Li C, Zhang HG, Wang XG, Tang XO. Residual attention network for image classification. In:
                     Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 31563164.
                [32]    He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In: Proc. of the IEEE Conf. on Computer Vision
                     and Pattern Recognition. 2016. 770778.
                [33]    Takikawa T, Acuna D, Jampani V, Fidler S. Gated-SCNN: Gated shape CNNs for semantic segmentation. In: Proc. of the IEEE
                     Int’l Conf. on Computer Vision. 2019. 52295238.
                [34]    Qian R, Robby TT, Yang WH, Su JJ, Liu JY. Attentive generative adversarial network for raindrop removal from a single image. In:
                     Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 24822491.
                [35]    Zhang H, Sindagi V, Patel VM. Image de-raining using a conditional generative adversarial network. IEEE Trans. on Circuits and
                     Systems for Video Technology, 2019, 110.

                 附中文参考文献:
                 [17]  李金晶.基于卷积神经网络的单幅图像去雨研究[硕士学位论文].马鞍山:安徽工业大学,2020.
                 [26]  肖进胜,王文,邹文涛,童乐,雷俊锋.基于景深和稀疏编码的图像去雨算法.计算机学报,2019,42(9):20242034.



                              张学锋(1978-),男,博士,教授,主要研究                      李金晶(1994-),男,硕士,主要研究领域为
                              领域为 模式 识 别 , 虚拟 现实 技术 , 人工                   计算机视觉,机器学习,虚拟现实.
                              智能.
   315   316   317   318   319   320   321   322   323   324   325