Page 319 - 《软件学报》2021年第10期
P. 319

张学锋  等:基于双注意力残差循环单幅图像去雨集成网络                                                     3291


                 的思想提出了门控网络,自主学习和分配各个阶段的权重,将每个阶段的输出结果与门控网络对应的权重相乘
                 相加.通过仿真和真实的雨数据实验,结果表明:本文的方法相对于文中其他图像去雨方法,在雨痕去除和纹理
                 细节保留与恢复上均取得了明显的提升.在未来的工作中,我们计划在非匹配真实的雨天情况下实现单幅图像
                 的去雨,因为仿真雨数据集不能很好地模拟实际复杂雨天的场景,希望通过不匹配的网络学习方式,达到真实情
                 景下的单幅图像去雨任务.

                 References:
                 [1]    Li Y, Tan RT, Guo XJ, Lu J, Brown MS. Rain streak removal using layer priors. In: Proc. of the IEEE Conf. on Computer Vision
                     and Pattern Recognition. 2016. 27362744.
                 [2]    Gu SH,  Meng  DY,  Zuo WM, Zhang  L. Joint  convolutional  analysis  and  synthesis sparse representation for single image layer
                     separation. In: Proc. of the IEEE Int’l Conf. on Computer Vision. 2017. 17081716.
                 [3]    Kang LW, Lin CW, Fu YH. Automatic single-image-based rain streaks removal via image decomposition. IEEE Trans. on Image
                     Processing, 2012,21(4):17421755.
                 [4]    Luo Y,  Xu  Y, Ji  H.  Removing rain from  a single image via discriminative sparse  coding.  In: Proc. of the IEEE Int’l  Conf. on
                     Computer Vision. 2015. 33973405.
                 [5]    Wang YL, Liu SC, Chen C, Zeng B. A hierarchical approach for rain or snow removing in a single color image. IEEE Trans. on
                     Image Processing, 2017,26(8):39363950.
                 [6]    Dong C, Loy CC, He KM, Tang XO. Image super-resolution using deep convolutional networks. IEEE Trans. on Pattern Analysis
                     and Machine Intelligence, 2015,38(2):295307.
                 [7]    Zhang K, Zuo WM, Chen YJ, Meng  DY, Zhang L. Beyond a  gaussian  denoiser: Residual  learning  of  deep CNN  for  image
                     denoising. IEEE Trans. on Image Processing, 2017,26(7):31423155.
                 [8]    Tai  Y,  Yang J,  Liu  XM. Image  super-resolution via deep recursive residual network. In: Proc. of the IEEE  Conf. on  Computer
                     Vision and Pattern Recognition. 2017. 31473155.
                 [9]    Fu XY, Huang JB, Ding XH, Liao YH, Paisley J. Clearing the skies: A deep network architecture for single-image rain removal.
                     IEEE Trans. on Image Processing, 2017,26(6):29442956.
                [10]    Zhang H, Patel VM. Density-aware single image deraining using a multi-stream dense network. In: Proc. of the IEEE Conf. on
                     Computer Vision. 2018. 695704.
                [11]    Fu XY, Huang JB, Zeng DL, Huang Y, Ding XH, Paisley J. Removing rain from single images via a deep detail network. In: Proc.
                     of the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 38553863.
                [12]    Yang WH, Tan RT, Feng JS, Liu JY, Guo ZM, Yan SC. Deep joint rain detection and removal from a single image. In: Proc. of the
                     IEEE Conf. on Computer Visionand Pattern Recognition. 2017. 13571366.
                [13]    Wang TY, Yang X, Xu K, Chen  SZ, Zhang Q, Lau  RW.  Spatial attentive single-image  deraining with a  high  quality  real rain
                     dataset. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2019. 122701229.
                [14]    Yang YZ, Lu H. Single image deraining using a recurrent multi-scale aggregation and enhancement network. In: Proc. of the IEEE
                     Int’l Conf. on Multimedia and Expo. 2019. 13781383.
                [15]    Li X, Wu JL, Lin ZC, Liu H, Zha HB. Recurrent squeeze-and-excitation context aggregation net for single image deraining. In:
                     Proc. of the European Conf. on Computer Vision. 2018. 254269.
                [16]    Ren DW, Zuo WM, Hu QH, Zhu PF, Meng DY. Progressive image deraining networks: A better and simpler baseline. In: Proc. of
                     the IEEE Conf. on Computer Vision and Pattern Recognition. 2019. 39373946.
                [17]    Li JJ. Research on single image rain removal based on convolutional neural network [MS. Thesis]. Maanshan: Anhui University of
                     Technology, 2020 (in Chinese with English abstract).
                [18]    Wang ZY, Ji SW. Smoothed dilated convolutions for improved dense prediction. In: Proc. of the 24th ACMSIGKDD Int’l Conf. on
                     Knowledge Discovery & Data Mining. 2018. 24862495.
                [19]    Shi XJ, Chen ZR, Wang H, Yeung DY, Wong WK, Woo WC. Convolutional LSTM network: A machine learning approach for
                     precipitation nowcasting. In: Advances in Neural Information Processing Systems. 2015. 802810.
   314   315   316   317   318   319   320   321   322   323   324