Page 245 - 《软件学报》2021年第10期
P. 245

朱阅岸  等:构建新型高性能与高可用的键值数据库系统                                                      3217


                 未来的一个研究方向       [25] .此外,为了弥补单拷贝系统数据的无序性,加速数据查找通常会在日志文件上增加一个
                 索引.这个索引一般不做持久化操作,因此系统崩溃恢复的时候需要重建索引.如何快速地重建索引,是一个不
                 小的挑战.对内存使用要求严格的使用场景(例如嵌入式),索引节点也有可能不被全部放入内存,这会增加额外
                 的 IO 操作.对内存和时延要求严格的场景如何优化 log-as-database 系统,是一个待探索的方向.


                 References:
                 [1]    Sears R, Ramakrishnan R. BLSM: A general purpose log structured merge tree. In: Candan KS, Chen Y, Snodgrass RT, eds. Proc.
                     of the  ACM SIGMOD Int’l  Conf.  on Management of Data (SIGMOD 2012). Scottsdale:  ACM, 2012. 217228. [doi: 10.1145/
                     2213836.2213862]
                 [2]    Mohan C, Haderle D, Lindsay B, Pirahesh H, Schwarz P. Aries: A transaction recovery method supporting fine-granularity locking
                     and partial rollbacks using  write-ahead  logging.  ACM Trans. on  Database System, 1992,17(1):94162. [doi: 10.1145/128765.
                     128770]
                 [3]    Stonebraker M. The land sharks are on the squawk box. ACM Communication, 2016,59(2):7483. [doi: 10.1145/2869958]
                 [4]    HBase. Open source implementation of HBase. http://hadoop.apache.org/hbase/
                 [5]    Chang  F, Dean J, Ghemawat  S, Hsieh  WC,  Wallach DA, Burrows M, Chandra T,  Fikes A, Gruber RE. Bigtable: A  distributed
                     storage system for structured data. ACM Trans. on Computer Systems, 2008,26(2):4:14:26. [doi: 10.1145/1365815.1365816]
                 [6]    Facebook. RocksDB. 2016. http://rocksdb.org
                 [7]    http://leveldb.org
                 [8]    https://github.com/google/leveldb
                 [9]    Chandramouli B, Prasaad G, Kossmann D, Levandoski JJ, Hunter J, Barnett M. FASTER: A concurrent key-value store with in-
                     place updates. In:  Das  G,  Jermaine  CM,  Bernstein PA,  eds, Proc. of the  ACM SIGMOD Int’l  Conf. on  Management of  Data.
                     Houston: ACM, 2018. 275290. [doi: 10.1145/3183713.3196898]
                [10]    Sheehy J, Smith D. Bitcask: A log-structured hash table for fast key/value data. White Paper, Basho Technologies, 2010.
                [11]    Verbitski A, Gupta A,  Saha  D, Brahmadesam M, Gupta K, Mittal R, Krishnamurthy  S, Maurice  S, Kharatishvili T, Bao XF.
                     Amazon aurora: Design considerations for high throughput cloud-native relational databases. In: Salihoglu S, Zhou W, Chirkova R,
                     Yang J, Suciu D, eds. Proc. of the ACM SIGMOD Int’l Conf. on Management of Data. Chicago: ACM, 2017. 10411052. [doi:
                     10.1145/3035918.3056101]
                [12]    Vo HT, Wang S, Agrawal D, Chen G, Ooi BC. LogBase: A scalable log-structured database system in the cloud. PVLDB, 2012,
                     5(10):10041015. [doi: 10.14778/2336664.2336673]
                [13]    Bernstein PA,  Reid CW,  Das S.  Hyder—A  transactional record  manager for shared flash. In: Proc. of the  CIDR.  Asilomar:
                     www.cidrdb.org, 2011. 920.
                [14]    Wang  T, Johnson R, Pandis I.  Query fresh:  Log shipping on steroids.  PVLDB, 2017,11(4):406417. [doi:  10.1145/3186728.
                     3164137]
                [15]    Schneider FB. Distributed Systems. 2nd ed., Boston: Addison-Wesley, 1993. 1841.
                [16]    Budhiraja N, Marzullo K, Schneider FB, Toueg S. Distributed Systems. 2nd ed., Boston: Addison-Wesley, 1993. 199216.
                [17]    Guerraoui  R, Schiper  A. Software-based replication for fault tolerance. IEEE Computer, 1997,30(4):6874. [doi: 10.1109/2.
                     585156]
                [18]    Ongaro  D,  Ousterhout JK.  In search of  an understandable consensus  algorithm. In:  Gibson G,  Zeldovich N,  eds. Proc. of the
                     USENIX Annual Technical Conf. Philadelphia: USENIX Association, 2014. 305319.
                [19]    Leis V, Kemper A, Neumann T. The adaptive radix tree: ARTful indexing for main-memory databases. In: Jensen CS, Jermaine
                     CM, Zhou X, eds, Proc. of the 29th IEEE Int’l Conf. on Data Engineering (ICDE). Brisbane: IEEE Computer Society, 2013. 3849.
                     [doi: 10.1109/ICDE.2013.6544812]
                [20]    Kallman R, Kimura H, Natkins J, Pavlo A, Rasin A, Zdonik S, Jones EPC, Madden S, Stonebraker M, Zhang Y, Hugg J, Abadi DJ.
                     H-Store: A high-performance,  distributed main memory transaction  processing system. PVLDB,  2008,1(2):14961499. [doi:
                     10.14778/1454159.1454211]
                [21]    VoltDB. http://voltdb.com
   240   241   242   243   244   245   246   247   248   249   250