Page 229 - 《软件学报》2021年第10期
P. 229

危剑豪  等:多查询共享技术研究综述                                                              3201


                [39]     Karimov J, Rabl T, Markl V. AStream: Ad-hoc shared stream processing. In: Proc. of the 2019 Int’l Conf. on Management of Data.
                     2019. 607622.
                [40]     Jonathan A, Chandra A, Weissman JB. Multi-query optimization in wide-area streaming analytics. In: Proc. of the ACM Symp. on
                     Cloud Computing. 2018. 412425.
                [41]    Xin JC, Wang GR, Li GH, Gao YJ, Zhang ZQ. State of the art data model and its research progress. Ruan Jian Xue Bao/Journal of
                     Software, 2019,30(1):142163 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5649.htm [doi: 10.13328/j.cnki.
                     jos.005649]
                [42]     Roy P, Seshadri S, Sudarshan S, Bhobe S. Efficient and extensible algorithms for multi query optimization. In: Proc. of the 2000
                     ACM SIGMOD Int’l Conf. on Management of Data. 2000. 249260.
                [43]    Qin XP, Wang HJ, Du XY, Wang S. Big data analysis—Competition and symbiosis of RDBMS and MapReduce. Ruan Jian Xue
                     Bao/Journal of Software, 2012,23(1):3245 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4091.htm [doi: 10.
                     3724/SP.J.1001.2012.04091]
                [44]    Zhou JR, Larson PÅ, Freytag JC, Lehner W. Efficient exploitation of similar subexpressions for query processing. In: Proc. of the
                     2007 ACM SIGMOD Int’l Conf. on Management of Data. 2007. 533544.
                [45]    Reinard D. Graph Theory, Grad. Texts in Math. Springer-Verlag, 2005.
                [46]    Jindal A, Karanasos K, Rao S, Patel H. Selecting subexpressions to materialize at datacenter scale. Proc. of the VLDB Endowment,
                     2018,11(7):800812.
                [47]    Cordella  LP, Foggia P, Sansone  C,  Vento M. A (sub) graph  isomorphism  algorithm  for  matching large graphs.  IEEE  Trans. on
                     Pattern Analysis & Machine Intelligence, 2004,26(10):13671372.
                [48]    Sellis TK. Multiple-query optimization. ACM Trans. on Database Systems, 1988,13(1):2352.
                [49]     Phan DH, Michiardi P. A novel, low-latency algorithm for multiple group—By query optimization. In: Proc. of the 32nd IEEE Int’l
                     Conf. on Data Engineering. 2016. 301312.
                [50]     Schleich M, Olteanu D, Khamis MA, Ngo HQ, Nguyen XL. A layered aggregate engine for analytics workloads. In: Proc. of the
                     2019 Int’l Conf. on Management of Data. 2019. 16421659.
                [51]     Guravannavar R, Sudarshan S. Reducing order enforcement cost in complex query plans. In: Proc. of the 23rd IEEE Int’l Conf. on
                     Data Engineering. 2007. 856865.
                [52]     Neumann T, Moerkotte G. A combined framework for grouping and order optimization. In: Proc. of the 30th Int’l Conf. on Very
                     Large Data. 2004. 960971.
                [53]    Nambiar RO, Wakou N, Carman F, Majdalany M. Transaction processing performance council (TPC): State of the council 2010. In:
                     Proc. of the TPCTC. 2010. 19.
                [54]     Zukowski M, van de Wiel M, Boncz P. Vectorwise: A vectorized analytical DBMS. In: Proc. of the 28th IEEE Int’l Conf. on Data
                     Engineering. 2012. 13491350.
                [55]     Sellis T. Multiple query optimization. ACM TODS, 1988,13(1):2352.
                [56]     Selinger PG, Astrahan MM, Chamberlin  DD,  Lorie  RA, Price  TG. Access path selection  in  a relational database  management
                     system. In: Proc. of the 1979 ACM SIGMOD Int’l Conf. on Management of Data. 1979. 2334.
                [57]     Pavlo A, Shang ZY. Carnegie Mellon database application catalog (CMDBAC). 2016. https://www.pdl.cmu.edu/DatabaseSystems/
                     CMUDBAC/index.shtml
                [58]     Roussopolous N. View indexing in relational databases. ACM Trans. on Database Systems, 1982,7(2):258290.
                [59]     Graefe G, McKenna WJ. Extensibility and search efficiency in the volcano optimizer generator. In: Proc. of the Intl. Conf. on Data
                     Engineering. 1993.
                [60]     Michiardi P, Carra D, Migliorini S. Cache-based multi-query optimization for data-intensive scalable computing frameworks. In:
                     Proc. of the Information Systems Frontiers. 2018.
                [61]     Chintapalli  S,  Dagit D, Evans B,  Farivar R, Graves T,  Holderbaugh  M, Liu Z, Nusbaum K,  Patil K,  Peng BY,  Poulosky  P.
                     Benchmarking streaming  computation  engines: Storm,  flink  and spark  streaming. In: Proc.  of the 2016 IEEE  Int’l Parallel  and
                     Distributed Processing Symp. on Workshops. 2016. 17891792.
                [62]     Tan KL, Goh ST, Ooi BC. Cache-on-demand: Recycling with certainty. In: Proc. of the 17th Int’l Conf. on Data Engineering. 2001.
                     633640.
                [63]     Lang CA, Bhattacharjee B, Malkemus T, Padmanabhan S, Wong K. Increasing buffer-locality for multiple relational table scans
                     through grouping and throttling. In: Proc. of the 23rd IEEE Int’l Conf. on Data Engineering. 2007. 11361145.
   224   225   226   227   228   229   230   231   232   233   234