Page 228 - 《软件学报》2021年第10期
P. 228

3200                                 Journal of Software  软件学报 Vol.32, No.10, October 2021

                [13]     Krishnamurthy S, Franklin MJ, Hellerstein JM, Jacobson G. The case for precision sharing. In: Proc. of the 30th Int’l Conf. on
                     Very Large Data Bases. 2004. 972986.
                [14]     Alonso G, Kossmann D, Salomie T, Schmidt A. Shared scans on main memory column stores. Technical Report, Systems Group,
                     Department of Computer Science, ETH Zurich, 2012. 769.
                [15]     Makreshanski D, Giannikis G, Alonso G, Kossmann D. Many-query join: Efficient shared execution of relational joins on modern
                     hardware. Journal of VLDB, 2018,27(5):669692.
                [16]     Sun JZ, Li JZ, Gao H. Efficient batch grouping in relational datasets. In: Proc. of the Int’l Conf. on Database Systems for Advanced
                     Applications. 2017. 376390.
                [17]     Dalvi NN, Sanghai SK, Roy P, Sudarshan S. Pipelining in multi-query optimization. Journal of Computer and System Sciences,
                     2003,66(4):728762.
                [18]     Cao Y, Bramandia R, Chan CY, Tan KL. Sort-sharing-aware query processing. Journal of VLDB, 2012,21(3):411436.
                [19]     Johnson R, Hardavellas N, Pandis I, Mancheril N, Harizopoulos S, Sabirli K, Ailamaki A, Falsafi B. To share or not to share? In:
                     Proc. of the VLDB Endowment. 2007. 351362.
                [20]     Harizopoulos  S, Shkapenyuk  V, Ailamaki  A. QPipe:  A simultaneously  pipelined relational query  engine. In: Proc. of  the 2005
                     ACM SIGMOD Int’l Conf. on Management of Data. 2005. 383394.
                [21]     Arumugam S, Dobra A, Jermaine CM, Pansare N, Perez LL. The DataPath system: A data-centric analytic processing engine for
                     large data warehouses. In: Proc. of the 2010 ACM SIGMOD Int’l Conf. on Management of Data. 2010. 519530.
                [22]     Candea G, Polyzotis N, Vingralek R. A scalable, predictable join operator for highly concurrent data warehouses. In: Proc. of the
                     35th Int’l Conf. on Very Large Data Bases. 2009. 277288.
                [23]     Zukowski M, Héman S, Nes N, Boncz PA. Cooperative scans: Dynamic bandwidth sharing in a DBMS. In: Proc. of the 33rd Int’l
                     Conf. on Very Large Data Bases. 2007. 723734.
                [24]     Psaroudakis I, Athanassoulis M, Ailamaki A. Sharing data and work across concurrent analytical queries. In: Proc. of the 39th Int’l
                     Conf. on Very Large Data Bases. 2013. 637648.
                [25]     Silva YN, Larson PÅ, Zhou JR. Exploiting common subexpressions for cloud query processing. In: Proc. of the 28th IEEE Int’l
                     Conf. on Data Engineering. 2012. 13371348.
                [26]     Le WC, Kementsietsidis A, Duan SY, Li FF. Scalable multi-query optimization for SPARQL. In: Proc. of the 28th IEEE Int’l Conf.
                     on Data Engineering. 2012. 666677.
                [27]     Guo XT, Gao H, Zou ZN. Leon: A distributed RDF engine for multi-query processing. In: Proc. of the Int’l Conf. on Database
                     Systems for Advanced Applications. 2019. 742759.
                [28]     Ren XG, Wang JH.  Multi-query optimization for subgraph isomorphism  search. Proc. of the  VLDB  Endowment, 2016,10(3):
                     121132.
                [29]     Chakravarthy  US,  Minker J. Multiple query processing in deductive databases using query graphs. In: Proc. of the  VLDB
                     Endowment. 1986. 384391.
                [30]     Wang KB, Zhang K, Yuan Y, Ma SY, Lee RB, Ding XN, Zhang XD. Concurrent analytical query processing with GPUs. Proc. of
                     the VLDB Endowment, 2014,7(11):10111022.
                [31]     Paul J, He J, He BS. GPL: A GPU-based pipelined query processing engine. In: Proc. of the 2016 Int’l Conf. on Management of
                     Data. 2016. 19351950.
                [32]     Wang XD, Olston C, Sarma AD, Burns RC. CoScan: Cooperative Scan sharing in the cloud. In: Proc. of the 2nd ACM Symp. on
                     Cloud Computing. 2011. 112.
                [33]     Nykiel T, Potamias M, Mishra C, Kollios G, Koudas N. MRShare: Sharing across multiple queries in MapReduce. Proc. of the
                     VLDB Endowment, 2010,3(1):494505.
                [34]     Agrawal P, Kifer D, Olston C. Scheduling shared scans of large data files. Proc. of the VLDB Endowment, 2008,1(1):958969.
                [35]     Wang GP, Chan CY. Multi-query optimization in MapReduce framework. Proc. of the VLDB Endowment, 2013,7(3):145156.
                [36]     Wolf JL, Balmin  A,  Rajan D,  Hildrum  K,  Khandekar R, Parekh S,  Wu KL,  Vernica  R.  On the optimization of schedules for
                     MapReduce workloads in the presence of shared scans. Journal of VLDB, 2012,21(5):589609.
                [37]     Lei C, Zhuang ZF, Rundensteiner EA, Eltabakh MY. Shared execution of recurring workloads in MapReduce. Proc. of the VLDB
                     Endowment, 2015,8(7):714725.
                [38]     Yang J, Zhang Y, Wang J, Xing C. Distributed query engine for multiple-query optimization over data stream. In: Proc. of the Int’l
                     Conf. on Database Systems for Advanced Applications. 2019. 523521.
   223   224   225   226   227   228   229   230   231   232   233