Page 65 - 《软件学报》2021年第9期
P. 65
姜佳君 等:软件缺陷自动修复技术综述 2689
[91] Liu K, Koyuncu A, Kim D, Bissyandé TF. Avatar: Fixing semantic bugs with fix patterns of static analysis violations. In: Proc. of
the 2019 IEEE 26th Int’l Conf. on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2019. 1−12. [doi: 10.1109/
SANER.2019.8667970]
[92] Yue RR, Meng N, Wang QX. A characterization study of repeated bug fixes. In: Proc. of the 2017 IEEE Int’l Conf. on Software
Maintenance and Evolution (ICSME). IEEE, 2017. 422−432. [doi: 10.1109/ICSME.2017.16]
[93] Jiang JJ, Ren LY, Xiong YF, Zhang LM. Inferring program transformations from singular examples via big code. In: Proc. of the
34th Int’l Conf. on Automated Software Engineering (ASE). IEEE, 2019. 255−266. [doi: 10.1109/ASE.2019.00033]
[94] Bhatia S, Kohli P, Singh R. Neuro-symbolic program corrector for introductory programming assignments. In: Proc. of the 40th
Int’l Conf. on Software Engineering (ICSE). IEEE, 2018. 60−70. [doi: 10.1145/3180155.3180219]
[95] Tufano M, Watson C, Bavota G, Penta MD, White M, Poshyvanyk D. An empirical study on learning bug-fixing patches in the
wild via neural machine translation. ACM Trans. on Software Engineering and Methodology, 2019,28(4):1−29.
[96] See A, Liu PJ, Manning CD. Get to the point: Summarization with pointer-generator networks. In: Proc. of the 55th Annual
Meering of the Association for Computational Lunguistics (ACL). ACM, 2017. 1073−1083. [doi: 10.18653/v1/P17-1099]
[97] Motwani M, Sankaranarayanan S, Just R, Brun Y. Do automated program repair techniques repair hard and important bugs?
Empirical Software Engineering, 2018,23(5):2901−2947.
[98] Yang DH, Qi YH, Mao XG. Evaluating the strategies of statement selection in automated program repair. In: Proc. of the Int’l Conf.
on Software Analysis, Testing, and Evolution (SATE). Springer-Verlag, 2018. 33−48.
[99] Liu K, Koyuncu A, Bissyandé TF, Kim D, Klein J, Le Traon Y. You cannot fix what you cannot find! An investigation of fault
localization bias in benchmarking automated program repair systems. In: Proc. of the 2019 12th IEEE Conf. on Software Testing,
Validation and Verification (ICST). IEEE, 2019. 102−113. [doi: 10.1109/ICST.2019.00020]
[100] Motwani M, Soto M, Brun Y, Just R, Le Goues C. Quality of automated program repair on real-world defects. IEEE Trans. on
Software Engineering, 2020. [doi: 10.1109/TSE.2020.2998785]
[101] Le XBD, Thung F, Lo D, Le Goues C. Overfitting in semantics-based automated program repair. Empirical Software Engineering,
2018,23(5):3007−3033.
[102] Jiang JJ, Xiong YF, Xia X. A manual inspection of defects4j bugs and its implications for automatic program repair. Science China
Information Sciences, 2019,62(10):200102. [doi: 10.1007/s11432-018-1465-6]
[103] Lou YL, Ghanbari A, Li X, Zhang LM, Zhang HT, Hao D, Zhang L. Can automated program repair refine fault localization? A
unified debugging approach. In: Proc. of the 29th ACM SIGSOFT Int’l Symp. on Software Testing and Analysis (ISSTA). 2020.
75−87. [doi: 10.1145/3406889]
[104] Noda K, Nemoto Y, Hotta K, Tanida H, Kikuchi S. Experience report: How effective is automated program repair for industrial
software? In: Proc. of the 2020 IEEE 27th Int’l Conf. on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2020.
612−616. [doi: 10.1109/SANER48275.2020.9054829]
[105] Yi J, Tan SH, Mechtaev S, Bohme M, Roychoudhury A. A correlation study between automated program repair and test-suite
metrics. Empirical Software Engineering, 2018,23(5):2948−2979. [doi: 10.1007/s10664-017-9552-y]
[106] Gao X, Mechtaev S, Roychoudhury A. Crash-avoiding program repair. In: Proc. of the 28th ACM SIGSOFT Int’l Symp. on
Software Testing and Analysis (ISSTA). ACM, 2019. 8−18. [doi: 10.1145/3293882.3330558]
[107] Weimer W, Fry ZP, Forrest S. Leveraging program equivalence for adaptive program repair: Models and first results. In: Proc. of
the 28th Int’l Conf. on Automated Software Engineering (ASE). IEEE, 2013. 356−366. [doi: 10.1109/ASE.2013.6693094]
[108] Le Goues C, Holtschulte N, Smith EK, Brun Y, Devanbu P, Forrest S, Weimer W. The ManyBugs and IntroClass benchmarks for
automated repair of C programs. IEEE Trans. on Software Engineering, 2015,41(12):1236−1256.
[109] Durieux T, Monperrus M. IntroClassJava: A benchmark of 297 small and buggy Java programs. [Research Report] hal-01272126.
Universite Lille 1. 2016. https://hal.archives-ouvertes.fr/hal-01272126
[110] Tan SH, Yi J, Mechtaev S, Roychoudhury A. Codeflaws: A programming competition benchmark for evaluating automated
program repair tools. In: Proc. of the 39th Int’l Conf. on Software Engineering Companion (ICSE-C). IEEE, 2017. 180−182. [doi:
10.1109/ICSE-C.2017.76]