Page 61 - 《软件学报》2021年第9期
P. 61

姜佳君  等:软件缺陷自动修复技术综述                                                              2685


          [7]    Bader J, Scott A, Pradel M, Chandra S. Getafix: Learning to fix bugs automatically. In: Proc. of the ACM Programming Language
             (OOPSLA). ACM, 2019. 1−27. [doi: 10.1145/3360585]
          [8]    Gupta R, Pal S, Kanade A, Shevade S. Deepfix: Fixing common C language errors by deep learning. In: Proc. of the 31st AAAI
             Conf. on Artificial Intelligence (AAAI). 2017. 1345−1351.
          [9]    Chen ZM, Kommrusch SJ, Tufano M, Pouchet LN, Poshyvanyk D, Monperrus M. Sequencer: Sequence-to-sequence learning for
             end-to-end program repair. IEEE Trans. on Software Engineering, 2019. [doi: 10.1109/TSE.2019.2940179]
         [10]    Vasic M, Kanade A, Maniatis P, Bieber D, Singh R. Neural program repair by jointly learning to localize and repair. In: Proc. of
             the 7th Int’l Conf. on Learning Representations (ICLR). 2019. 1−12
         [11]    Liu K, Koyuncu A, Kim D, Bissyandé TF. TBar: Revisiting template-based automated program repair. In: Proc. of the 28th ACM
             SIGSOFT Int’l Symp. on Software Testing and Analysis. ACM, 2019. 31−42. [doi: 10.1145/3293882.3330577]
         [12]    Abreu R, Zoeteweij P, Van Gemund AJC. On the accuracy of spectrum-based fault localization. In: Proc. of Testing: Academic and
             Industrial Conf. on Practice and Research Techniques-MUTATION. IEEE, 2007. 89−98. [doi: 10.1109/TAIC.PART.2007.13]
         [13]    Pearson S, Campos J, Just R, Fraser G, Abreu R, Ernst MD, Pang D, Keller B. Evaluating and improving fault localization. In: Proc.
             of the 39th Int’l Conf. on Software Engineering (ICSE). IEEE, 2017. 609−620. [doi: 10.1109/ICSE.2017.62]
         [14]    Xuan JF, Monperrus M. Learning to combine multiple ranking metrics for fault localization. In: Proc. of the Int’l Conf. on Software
             Maintenance and Evolution (ICSME). IEEE, 2014. 191−200. [doi: 10.1109/ICSME.2014.41]
         [15]    Xie X, Chen TY, Kuo FC, Xu B. A theoretical analysis of the risk evaluation formulas for spectrum-based fault localization. ACM
             Trans. on Software Engineering and Methodology, 2013,22(4):1−40. [doi: 10.1145/2522920.2522924]
         [16]    Bian P, Liang B, Shi WC, Huang JJ, Cai Y. NAR-Miner: Discovering negative association rules from code for bug detection. In:
             Proc. of the 2018 26th ACM Joint Meeting on European Software Engineering Conf. and Symp. on the Foundations of Software
             Engineering (ESEC/FSE). ACM, 2018. 411−422. [doi: 10.1145/3236024.3236032]
         [17]    Liang B, Bian P, Zhang Y, Shi WC, You W, Cai Y. AntMiner: Mining more bugs by reducing noise interference. In: Proc. of the
             38th Int’l Conf. on Software Engineering (ICSE). IEEE, 2016. 333−344. [doi: 10.1145/2884781.2884870]
         [18]    Li ZM, Zhou YY. PR-Miner: Automatically extracting implicit programming rules and detecting violations in large software code.
             In: Proc. of the 10th European Software Engineering Conf. Held Jointly with 13th ACM SIGSOFT Int’l Symp. on Foundations of
             Software Engineering (ESEC/FSE). ACM, 2005. 306−315. [doi: 10.1145/1081706.1081755]
         [19]    Wang QQ, Parnin C, Orso A. Evaluating the usefulness of IR-based fault localization techniques. In: Proc. of the 2015 Int’l Symp.
             on Software Testing and Analysis (ISSTA). ACM, 2015. 1−11. [doi: 10.1145/2771783.2771797]
         [20]    Wong WE, Gao RZ, Li YH, Abreu R, Wotawa F. A survey on software fault localization. IEEE Trans. on Software Engineering,
             2016,42(8):707−740. [doi: 10.1109/TSE.2016.2521368]
         [21]    Qi ZC, Long F, Achour S, Rinard M. An analysis of patch plausibility and correctness for generate-and-validate patch generation
             systems. In: Proc. of the 2015 Int’l Symp. on Software Testing and Analysis (ISSTA). ACM, 2015. 24−36. [doi: 10.1145/2771783.
             2771791]
         [22]    Xiong YF, Liu XY, Zeng MH, Zhang L, Huang G. Identifying patch correctness in test-based program repair. In: Proc. of the 40th
             Int’l Conf. on Software Engineering (ICSE). ACM, 2018. 789−799. [doi: 10.1145/3180155.3180182]
         [23]    Xin Q, Reiss SP. Identifying test-suite-overfitted patches through test case generation. In: Proc. of the 26th ACM SIGSOFT Int’l
             Symp. on Software Testing and Analysis (ISSTA), Vol.17. ACM, 2017. 226−236. [doi: 10.1145/3092703.3092718]
         [24]    Long F, Rinard M. Automatic patch generation by learning correct code. In: Proc. of the 43rd Annual ACM SIGPLAN-SIGACT
             Symp. on Principles of Programming Languages (POPL). ACM, 2016. 298−312. [doi: 10.1145/2837614.2837617]
         [25]    Xiong YF, Wang J, Yan RF, Zhang JC, Han S, Huang G, Zhang L. Precise condition synthesis for program repair. In: Proc. of the
             39th Int’l Conf. on Software Engineering (ICSE). IEEE, 2017. 416−426. [doi: 10.1109/ICSE.2017.45]
         [26]    Forrest S, Nguyen TV, Weimer W, Le Goues C. A genetic programming approach to automated software repair. In: Proc. of the
             11th Annual Conf. on Genetic and Evolutionary Computation (GECCO). ACM, 2009. 947−954.
         [27]    Le Goues C, Dewey-Vogt M, Forrest S, Weimer W. A systematic study of automated program repair: Fixing 55 out of 105 bugs for
             $8 each. In: Proc. of the 2012 34th Int’l Conf. on Software Engineering (ICSE). IEEE, 2012. 3−13.
   56   57   58   59   60   61   62   63   64   65   66