Page 291 - 《软件学报》2021年第9期
P. 291

沈军  等:基于卷积神经网络的低嵌入率空域隐写分析                                                        2915


         [18]    Xu G, Wu HZ, Shi YQ. Ensemble of CNNs for steganalysis: An empirical study. In: Proc. of the ACM Workshop on Information
             Hiding and Multimedia Security. ACM, 2016. 103−107.
         [19]    Yedroudj M, Comby F, Chaumont M. Yedroudj-net: An efficient CNN for spatial steganalysis. In: Proc. of the IEEE Int’l Conf. on
             Acoustics, Speech and Signal Processing. IEEE, 2018. 2092−2096.
         [20]    He K, Zhang X, Ren  S,  Sun  J. Deep  residual  learning  for image recognition. In:  Proc. of the Computer Vision and Pattern
             Recognition. Las Vegas: IEEE, 2016. 770−778.
         [21]    Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proc. of the
             Int’l Conf. on Machine Learning. IMLS, 2015. 448−456.
         [22]    Ye J, Ni J,  Yi  Y.  Deep learning hierarchical representations for image steganalysis.  IEEE  Trans. on Information Forensics  and
             Security, 2017,12(11):2545−2557.
         [23]    Wu S, Zhong S, Liu Y. Deep residual learning for image steganalysis. Multimedia tools and applications, 2018,77(9):10437−10453.
         [24]    Tsang CF, Fridrich J. Steganalyzing images of arbitrary size with CNNs. Electronic Imaging, 2018,2018(7):1−8.
         [25]     Shen J. Research on image steganalysis with low embedding rate based on convolutional neural network [MS. Thesis]. Changsha:
             Hunan University, 2020 (in Chinese with English abstract).
         [26]    Chen M, Sedighi V, Boroumand M, Fridrich J. JPEG-phase-aware convolutional neural network for steganalysis of JPEG images.
             In: Proc. of the ACM Workshop on Information Hiding and Multimedia Security. Denver: ACM, 2017. 75−84.
         [27]    Bas P, Filler T, Pevný T. “Break our steganographic system”: The ins and outs of organizing BOSS. In: Proc. of the Int’l Workshop
             on Information Hiding. Berlin: Springer-Verlag, 2011. 59−70.
         [28]    Jia Y, Shelhamer E, Donahue J, Karayev S. Caffe: Convolutional architecture for fast feature embedding. In: Proc. of the ACM
             Int’l Conf. on Multimedia. Glasgow: ACM, 2014. 675−678.
         [29]    Glorot  X, Bengio  Y.  Understanding  the difficulty of training deep feedforward neural networks. In: Proc. of  the Int’l  Conf. on
             Artificial Intelligence and Statistics. 2010. 249−256.

         附中文参考文献:
          [1]  黄炜,赵险峰,冯登国,盛任农.基于主成分分析进行特征融合的 JPEG 隐写分析.软件学报,2012,23(7):1869−1879. http://www.jos.
             org.cn/1000-9825/4107.htm [10.3724/SP.J.1001.2012.04107]
          [2]  张逸为,张卫明,俞能海.针对特定测试样本的隐写分析方法.软件学报,2018,29(4):987−1001. http://www.jos.org.cn/1000-9825/
             5411.htm [doi: 10.13328/j.cnki.jos.005411]
          [3]  黄殿中,张静飞,张茹,李鹏超,郭云彪.基于大数据环境的多模态信息隐藏新体系.电子学报,2017,45(2):477−484.
          [4]  汤光明,孙艺,徐潇雨,王宇.动态更新失真代价的自适应 JPEG 隐写算法.通信学报,2017,38(9):1−8.
          [9]  翟黎明,嘉炬,任魏翔,徐一波,王丽娜.深度学习在图像隐写术与隐写分析领域中的研究进展.信息安全学报,2018,3(6):2−12.
         [13]  高培贤,魏立线,刘佳,刘明明.基于卷积神经网络的图像隐写分析方法.计算机应用研究,2019,36(1):54−288.
         [25]   沈军.基于卷积神经网络的低嵌入率图像隐写分析研究[硕士学位论文].长沙:湖南大学,2020.


                       沈军(1993-),男,硕士,主要研究领域为多                      秦拯 (1969- ), 男 ,博士 ,教授 , 博 士生导
                       媒体信息安全.                                      师,CCF 专业会员,主要研究领域为数据安
                                                                    全与隐私保护,云计算,大数据,机器学习.



                       廖鑫(1985-),男,博士,副教授,博士生导                      刘绪崇(1974-),男,博士,教授,主要研究
                       师,CCF 高级会员,主要研究领域为多媒体                        领域为信息网络安全,网络犯罪侦查,人工
                       安全,人工智能安全,数字取证,密码学.                          智能.
   286   287   288   289   290   291   292   293   294   295   296