Page 211 - 《软件学报》2021年第9期
P. 211

吴信东  等:碎片化家谱数据的融合技术                                                              2835


         [32]    Ji G, Liu K, He S, Zhao J. Distant supervision for relation extraction with sentence-level attention and entity descriptions. In: Proc.
             of the Conf. on Artificial Intelligence. Menlo Park: AAAI, 2017. 3060−3066.
         [33]    Wu F, Weld DS. Autonomously semantifying Wikipedia. In: Proc. of the Conf. on Information and Knowledge Management. New
             York: ACM, 2007. 41−50. [doi: 10.1145/1321440.1321449]
         [34]    Zhao  JS, Zhu QM,  Zhou GD, Zhang L. Review  of  research  in  sutomatic  keyword extraction. Ruan  Jian Xue Bao/Journal  of
             Software, 2017,28(9):2431−2449  (in Chinese with English abstract).  http://www.jos.org.cn/1000-9825/5301.htm  [doi:  10.13328/
             j.cnki.jos.005301]
         [35]    Bleiholder J, Naumann F. Data fusion. ACM Computing Surveys, 2008,41(1):1−41. [doi: 10.1145/1456650.1456651]
         [36]    Zhuang Y, Li GL, Feng JH. A survey on entity alignment of knowledge base. Journal of Computer Research and Development,
             2016,53(01):165−192 (in Chinese with English abstract). [doi: 10.7554/issn1000-1239.2016.20150661]
         [37]    Fellegi I, Sunter A. A theory for record linkage. Journal of the American Statistical Association, 1969,64(328):1183−1210. [doi:
             10.1080/01621459.1969.10501049]
         [38]    Chen Z, Kalashnikov DV, Mehrotra S. Exploiting context analysis for combining multiple entity resolution systems. In: Proc. of the
             ACM SIGMOD Int’l Conf. on Management of Data. New York: ACM, 2009. 207−218. [doi: 10.1145/1559845.1559869]
         [39]    Guan  SP,  Jin XL,  Wang  YZ, Jia YT,  Shen  HW, Li ZX, Cheng XQ. Self-learning and embedding  based entity alignment.
             Knowledge and Information Systems, 2019,59(2):361−386. [doi: 10.1007/s10115-018-1191-0]
         [40]    Li YL, Gao J, Meng CS, Li Q, Su L, Zhao B, Fan W, Han JW. A survey on truth discovery. SIGKDD Explorations, 2015,17(2):
             1−16. [doi: 10.1145/2897350.2897352]
         [41]    Dong XL, Gabrilovich E, Heitz G, Horn W, Murphy K, Sun S, Zhang W. From data fusion to knowledge fusion. Proc. of the VLDB
             Endowment, 2015,7(10):881−892.
         [42]    Yin X, Han J, Yu PS. Truth discovery with multiple conflicting information providers on the Web. IEEE Trans. on Knowledge and
             Data Engineering, 2008,20(6):796−808. [doi: 10.1109/TKDE.2007.190745]
         [43]    Lyu S, Ouyang W, Wang YQ, Shen HW, Cheng XQ. Truth discovery by claim and source embedding. In: Proc. of the Conf. on
             Information and Knowledge Management. New York: ACM, 2017. 2183−2186. [doi: 10.1109/TKDE.2019.2936189]
         [44]    Smid J, Neruda R. Comparing datasets by attribute alignment. In: Proc. of the IEEE Symp. on Computational Intelligence and Data
             Mining. Piscataway: IEEE, 2014. 56−62. [doi: 10.1109/CIDM.2014.7008148]
         [45]    Hankcs. HanLP. https://github.com/hankcs/HanLP/tree/1.x
         [46]    Navarro  G. A guided tour  to  approximate string  matching. ACM  Computing Surveys, 2001,33(1):31−88. [doi: 10.1145/375360.
             375365]
         [47]    Monge AE, Elkan CP. The field matching problem: Algorithms and applications. In: Proc. of the Conf. on Knowledge Discovery
             and Data Mining. Menlo Park: AAAI, 1996. 267−270.
         [48]    Dong  XL,  Berti-Equille  L, Srivastava  D. Integrating  conflicting data:  The role of source dependence. Proc. of the  VLDB
             Endowment, 2009,2(1):550−561. [doi: 10.14778/1687627.1687690]
         [49]    Jia S, Li  M, Xiang Y.  Chinese open relation  extraction and knowledge base  establishment.  ACM  Trans. on Asian  and  Low-
             Resource Language Information Processing (TALLIP), 2018,17(3):15−22. [doi: 10.1145/3162077]
         [50]    Ownthink. Jiagu. https://github.com/ownthink/Jiagu
         [51]    Zhu H, Xie RB, Liu ZY, Sun MS. Iterative entity alignment via joint knowledge embeddings. In: Proc. of the Int’l Joint Conf. on
             Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers, 2017. 4258−4264. [doi: 10.24963/ijcai.2017/595]
         [52]    Trisedya BD, Qi J, Zhang R. Entity alignment between knowledge graphs using attribute embeddings. In: Proc. of the Conf. on
             Artificial Intelligence. Menlo Park: AAAI, 2019. 297−304. [doi: 10.1609/aaai.v33i01.3301297]

         附中文参考文献:
          [1]  王元卓,靳小龙,程学旗.网络大数据:现状与展望.计算机学报,2013,36(6):1125−1138. [doi: 0.3724/SP.J.1016.2013.01125]
          [3]  湛庐.家谱中的文献问题.北京大学学报(哲学社会科学版),2007,53(1):150−151. [doi: 10.16113/j.cnki.daxtx.2007.01.010]
          [4]  黄霄羽.国外家谱档案利用热潮之成因探析及启示.档案学通讯,2007,29(1):30−33.
          [5]  武新立.中国的家谱及其学术价值.历史研究,1988,35(6):20−34.
          [6]  欧阳康.大数据与人文社会科学研究的变革与创新.光明日报,2016-11-10(016).
          [7]  孙建军.大数据时代人文社会科学如何发展.光明日报,2014-07-07(011).
   206   207   208   209   210   211   212   213   214   215   216