Page 210 - 《软件学报》2021年第9期
P. 210
2834 Journal of Software 软件学报 Vol.32, No.9, September 2021
[11] Hu D, Wen YN, Lv GN, Shen JW. GIS-based family tree resources integration. Human Geography, 2012,27(1):50−53 (in Chinese
with English abstract). [doi: 10.13959/j.issn.1003-2398.2012.01.010]
[12] Cheng XQ, Jin XL, Wang YZ, Guo JF, Zhang TY, Li GJ. Survey on big data system and analytic technology. Ruan Jian Xue Bao/
Journal of Software, 2014,25(9):1240−1252 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4674.htm [doi:
10.13328/j.cnki.jos.004674]
[13] Li SQ, Ding H, Xu X. Considering on user service of digital library in the age of big data. Journal of the China Society for
Scientific and Technical Information, 2018,37(6):569−579 (in Chinese with English abstract). [doi: 10.3772/j.issn.1000-0135.2018.
06.002]
[14] Wu XD, He J, Lu RQ, Zheng NN. From big data to big knowledge: HACE+BigKE. Acta Automatica Sinica, 2016,42(7):965−982
(in Chinese with English abstract). [doi: 10.16383/j.aas.2016.c160239]
[15] Wu MH, Wu XD. On big wisdom. Knowledge and Information Systems, 2018,58(1):1−8. [doi: 10.1007/s10115-018-1282-y]
[16] Liu Q, Li Y, Duan H, Liu Y, Qin ZG. Knowledge graph construction techniques. Journal of Computer Research and Development,
2016,53(3):582−600 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2016.20148228]
[17] Grishman R, Sundheim B. Message understanding Conference-6: A brief history. In: Proc. of the Int’l Conf. on Computational
Linguistics. New York: ACM, 1996. 466−471.
[18] Rau LF. Extracting company names from text. In: Proc. of the IEEE Conf. on Artificial Intelligence Application. Piscataway: IEEE,
1991. 29−32. [doi: 10.1109/CAIA.1991.120841]
[19] Yang JF, Yu QB, Guan Y, Jiang ZP. An overview of research on electronic medical recordoriented named entity recognition and
entity relation extraction. Acta Automatica Sinica, 2014,40(8):1537−1562 (in Chinese with English abstract). [doi: 10.3724/SP.J.
1004.2014.01537]
[20] Lai PT, Huang MS, Yang TH, Hsu WL, Tsai RTH. Statistical principle-based approach for gene and protein related object
recognition. Journal of Cheminformatics, 2018,10(1):64:1−64:9. [doi: 10.1186/s13321-018-0314-7]
[21] Hwang S, Hong JE, Nam YK, Towards effective entity extraction of scientific documents using discriminative linguistic features.
KSII Trans. on Internet and Information Systems, 2019,13(3):1639−1658. [doi: 10.3837/tiis.2019.03.030]
[22] Akkasi A, Varoglu E. Improving biochemical named entity recognition performance using PSO classifier selection and bayesian
combination method. IEEE/ACM Trans. on Computational Biology and Bioinformatics, 2016,14(6):1327−1338. [doi: 10.1109/
TCBB.2016.2570216]
[23] Liu L, Wang DB. A review on named entity recognition. Journal of the China Society for Scientific and Technical Information,
2018,37(3):329−340 (in Chinese with English abstract). [doi: 10.3772/j.issn.1000-0135.2018.03.010]
[24] Peng N, Dredze M. Improving named entity recognition for Chinese social media with word segmentation representation learning.
In: Proc. of the Association for Computational Linguistics. Stroudsburg: ACL, 2016. 149−155.
[25] Qiu JH, Zhou YM, Wang Q, Ruan T, Gao J. Chinese clinical named entity recognition using residual dilated convolutional neural
network with conditional random field. IEEE Trans. on NanoBioscience, 2019,18(3):306−315. [doi: 10.1109/TNB.2019.2908678]
[26] Yang YJ, Xu B, Hu JW, Tong MH, Zhang P, Zheng L. Accurate and efficient method for constructing domain knowledge graph.
Ruan Jian Xue Bao/Journal of Software, 2018,29(10):2931−2947 (in Chinese with English abstract). http://www.jos.org.cn/1000-
9825/5552.htm [doi: 10.13328/j.cnki.jos.005552]
[27] E HH, Zhang WJ, Xiao SQ, Cheng R, Hu YX, Zhou XS, Niu PQ. A survey of entity relationship extraction based on deep learning.
Ruan Jian Xue Bao/Journal of Software, 2019,30(6):1−28 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/
5817.htm [doi: 10.13328/j.cnki.jos.005817]
[28] Gan LX, Wan CX, Liu DX, Zhong Q, Jiang TJ. Chinese named entity relation extraction based on syntactic and semantic features.
Journal of Computer Research and Development, 2016,53(2):284−302 (in Chinese with English abstract). [doi: 10.7544/issn1000-
1239.2016.20150842]
[29] Chen LW, Feng YS, Zhao DY. Extracting relations from the Web via weakly supervised learning. Journal of Computer Research
and Development, 2013,50(9):1825−1835 (in Chinese with English abstract). [doi:10.7544/issn1000-1239.2013.20130491]
[30] Hasegawa T, Sekine S, Grishman R. Discovering relations among named entities from large corpora. In: Proc. of the Association
for Computational Linguistics. Stroudsburg: ACL, 2004. 415−422. [doi: 10.3115/1218955.1219008]
[31] Leng J, Jiang P. A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm.
Knowledge-Based Systems, 2016,100:188−199. [doi: 10.1016/j.knosys.2016.03.008]