Page 210 - 《软件学报》2021年第9期
P. 210

2834                                 Journal of Software  软件学报 Vol.32, No.9,  September 2021

         [11]    Hu D, Wen YN, Lv GN, Shen JW. GIS-based family tree resources integration. Human Geography, 2012,27(1):50−53 (in Chinese
             with English abstract). [doi: 10.13959/j.issn.1003-2398.2012.01.010]
         [12]    Cheng XQ, Jin XL, Wang YZ, Guo JF, Zhang TY, Li GJ. Survey on big data system and analytic technology. Ruan Jian Xue Bao/
             Journal of Software, 2014,25(9):1240−1252  (in Chinese with English abstract).  http://www.jos.org.cn/1000-9825/4674.htm [doi:
             10.13328/j.cnki.jos.004674]
         [13]    Li SQ,  Ding H,  Xu X.  Considering  on user service of digital  library in  the  age of big data.  Journal of the  China Society for
             Scientific and Technical Information, 2018,37(6):569−579 (in Chinese with English abstract). [doi: 10.3772/j.issn.1000-0135.2018.
             06.002]
         [14]    Wu XD, He J, Lu RQ, Zheng NN. From big data to big knowledge: HACE+BigKE. Acta Automatica Sinica, 2016,42(7):965−982
             (in Chinese with English abstract). [doi: 10.16383/j.aas.2016.c160239]
         [15]    Wu MH, Wu XD. On big wisdom. Knowledge and Information Systems, 2018,58(1):1−8. [doi: 10.1007/s10115-018-1282-y]
         [16]    Liu Q, Li Y, Duan H, Liu Y, Qin ZG. Knowledge graph construction techniques. Journal of Computer Research and Development,
             2016,53(3):582−600 (in Chinese with English abstract). [doi: 10.7544/issn1000-1239.2016.20148228]
         [17]    Grishman R, Sundheim  B. Message  understanding  Conference-6:  A brief history. In: Proc.  of the Int’l  Conf.  on Computational
             Linguistics. New York: ACM, 1996. 466−471.
         [18]    Rau LF. Extracting company names from text. In: Proc. of the IEEE Conf. on Artificial Intelligence Application. Piscataway: IEEE,
             1991. 29−32. [doi: 10.1109/CAIA.1991.120841]
         [19]    Yang JF, Yu QB, Guan Y, Jiang ZP. An overview of research on electronic medical recordoriented named entity recognition and
             entity relation extraction. Acta Automatica Sinica, 2014,40(8):1537−1562 (in Chinese with English abstract). [doi: 10.3724/SP.J.
             1004.2014.01537]
         [20]    Lai  PT,  Huang MS, Yang  TH, Hsu  WL, Tsai RTH. Statistical  principle-based approach for  gene and  protein  related  object
             recognition. Journal of Cheminformatics, 2018,10(1):64:1−64:9. [doi: 10.1186/s13321-018-0314-7]
         [21]    Hwang S, Hong JE, Nam YK, Towards effective entity extraction of scientific documents using discriminative linguistic features.
             KSII Trans. on Internet and Information Systems, 2019,13(3):1639−1658. [doi: 10.3837/tiis.2019.03.030]
         [22]    Akkasi A, Varoglu E. Improving biochemical named entity recognition performance using PSO classifier selection and bayesian
             combination method.  IEEE/ACM Trans.  on Computational Biology and Bioinformatics,  2016,14(6):1327−1338. [doi: 10.1109/
             TCBB.2016.2570216]
         [23]    Liu L, Wang DB. A review on named entity recognition. Journal of the China Society for Scientific and Technical Information,
             2018,37(3):329−340 (in Chinese with English abstract). [doi: 10.3772/j.issn.1000-0135.2018.03.010]
         [24]    Peng N, Dredze M. Improving named entity recognition for Chinese social media with word segmentation representation learning.
             In: Proc. of the Association for Computational Linguistics. Stroudsburg: ACL, 2016. 149−155.
         [25]    Qiu JH, Zhou YM, Wang Q, Ruan T, Gao J. Chinese clinical named entity recognition using residual dilated convolutional neural
             network with conditional random field. IEEE Trans. on NanoBioscience, 2019,18(3):306−315. [doi: 10.1109/TNB.2019.2908678]
         [26]    Yang YJ, Xu B, Hu JW, Tong MH, Zhang P, Zheng L. Accurate and efficient method for constructing domain knowledge graph.
             Ruan Jian Xue Bao/Journal of Software, 2018,29(10):2931−2947 (in Chinese with English abstract). http://www.jos.org.cn/1000-
             9825/5552.htm [doi: 10.13328/j.cnki.jos.005552]
         [27]    E HH, Zhang WJ, Xiao SQ, Cheng R, Hu YX, Zhou XS, Niu PQ. A survey of entity relationship extraction based on deep learning.
             Ruan Jian  Xue  Bao/Journal of Software, 2019,30(6):1−28  (in Chinese with English abstract).  http://www.jos.org.cn/1000-9825/
             5817.htm [doi: 10.13328/j.cnki.jos.005817]
         [28]    Gan LX, Wan CX, Liu DX, Zhong Q, Jiang TJ. Chinese named entity relation extraction based on syntactic and semantic features.
             Journal of Computer Research and Development, 2016,53(2):284−302 (in Chinese with English abstract). [doi: 10.7544/issn1000-
             1239.2016.20150842]
         [29]    Chen LW, Feng YS, Zhao DY. Extracting relations from the Web via weakly supervised learning. Journal of Computer Research
             and Development, 2013,50(9):1825−1835 (in Chinese with English abstract). [doi:10.7544/issn1000-1239.2013.20130491]
         [30]    Hasegawa T, Sekine S, Grishman R. Discovering relations among named entities from large corpora. In: Proc. of the Association
             for Computational Linguistics. Stroudsburg: ACL, 2004. 415−422. [doi: 10.3115/1218955.1219008]
         [31]    Leng J, Jiang P. A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm.
             Knowledge-Based Systems, 2016,100:188−199. [doi: 10.1016/j.knosys.2016.03.008]
   205   206   207   208   209   210   211   212   213   214   215