Page 191 - 《软件学报》2021年第9期
P. 191
杨博 等:一种协同过滤式零次学习方法 2815
[41] Socher R, Ganjoo M, Sridhar H, Bastani O, Manning C, Ng A. Zero shot learning through cross-modal transfer. In: Proc. of the
Advances in Neural Information Processing Systems. 2014.
[42] Akata Z, Perronnin F, Harchaoui Z, Schmid C. Label-embedding for image classification. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 2015,38(7):1425−1438.
[43] Akata Z, Reed S, Walter D, Lee H, Schiele B. Evaluation of output embeddings for fine-grained image classification. In: Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition. 2015. 2927−2936.
[44] Romera-Paredes B, Torr P. An embarrassingly simple approach to zero-shot learning. In: Proc. of the Int’l Conf. on Machine
Learning. PMLR, 2015. 2152−2161.
[45] Zhang Z, Saligrama V. Zero-shot learning via semantic similarity embedding. In: Proc. of the IEEE Int’l Conf. on Computer Vision.
2015. 4166−4174.
[46] Xian Y, Akata Z, Sharma G, Nguyen Q, Hein M, Schiele B. Latent embeddings for zero-shot classification. In: Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition. 2016. 69−77.
[47] Zhang H, Koniusz P. Zero-shot kernel learning. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018.
7670−7679.
[48] Ding Z, Liu H. Marginalized latent semantic encoder for zero-shot learning. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition. 2019. 6191−6199.
[49] Paul A, Krishnan NC, Munjal P. Semantically aligned bias reducing zero shot learning. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition. 2019. 7056−7065.
[50] Yu Y, Ji Z, Fu Y, Guo J, Pang Y, Zhang Z. Stacked semantics-guided attention model for fine-grained zero-shot learning. In:
Advances in Neural Information Processing Systems. 2018. 5995−6004.
[51] Zhu Y, Xie J, Tang Z, Peng X, Elgammal A. Semantic-guided multi-attention localization for zero-shot learning. In: Advances in
Neural Information Processing Systems. 2019.
[52] Xie G, Liu L, Zhu F, Zhao F, Zhang Z, Yao Y, Qin J, Shao L. Region graph embedding network for zero-shot learning. In: Proc. of
the European Conf. on Computer Vision. Cham: Springer-Verlag, 2020. 562−580.
附中文参考文献:
[30] 邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法.软件学报,2003(9):1621−1628. http://www.jos.org.cn/1000-
9825/14/1621.htm
杨博(1974-),男,博士,教授,博士生导师, 张春旭(1996-),女,学士,主要研究领域为
CCF 杰出会员,主要研究领域为知识发现 数据挖掘,网络表示学习.
与知识工程,网络分析理论与应用,推荐系
统,多智能体系统.
张钰雪晴(1997-),女,硕士,主要研究领域 黄晶(1975-),女,博士,副教授,博士生导
为零次学习,深度学习. 师,CCF 专业会员,主要研究领域为大规模
网络数据挖掘与学习,智能大数据处理,复
杂网络分析,深度学习,多 Agent 系统,数据
驱动的智能传染病防控.
彭羿达(1996-),男,学士,主要研究领域为
计算机视觉.