Page 190 - 《软件学报》2021年第9期
P. 190

2814                                 Journal of Software  软件学报 Vol.32, No.9,  September 2021

         [16]    Kodirov E, Xiang T, Fu Z, Gong S. Unsupervised domain adaptation for zero-shot learning. In: Proc. of the IEEE Int’l Conf. on
             Computer Vision. 2015. 2452−2460.
         [17]    Chen L, Zhang H,  Xiao  J, Liu W, Chang  S. Zero-shot  visual  recognition  using  semantics-preserving adversarial embedding
             networks. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 1043−1052.
         [18]    Lampert CH, Nickisch H, Harmeling S. Attribute-based classification for zero-shot visual object categorization. IEEE Trans. on
             Pattern Analysis and Machine Intelligence, 2013,36(3):453−465.
         [19]    Li Y, Zhang J, Zhang J, Huang K. Discriminative learning of latent features for zero-shot recognition. In: Proc. of the IEEE Conf.
             on Computer Vision and Pattern Recognition. 2018. 7463−7471.
         [20]    Radovanovic M,  Nanopoulos A, Ivanovic M. Hubs in space: Popular  nearestneighbors  in high-dimensional data. Journal of
             Machine Learning Research, 2010,11(Sept.):2487−2531.
         [21]    Wang X, Ye Y, Gupta A. Zero-shot recognition via semantic embeddings andknowledge graphs. In: Proc. of the IEEE Conf. on
             Computer Visionand Pattern Recognition. 2018. 6857−6866.
         [22]    Zhang L, Xiang T, Gong S. Learning a deep embedding model for zero-shotlearning. In: Proc. of the IEEE Conf. on Computer
             Vision and Patternrecognition. 2017. 2021−2030.
         [23]    Changpinyo S, Chao WL, Gong B, Sha F. Classifier and exemplar synthesis forzero-shot learning. Int’l Journal of Computer Vision,
             2020,128(1):166−201.
         [24]    Changpinyo S, Chao WL, Sha F. Predicting visual exemplars of unseen classesfor zero-shot learning. In: Proc. of the IEEE Int’l
             Conf. on Computer Vision. 2017. 3476−3485.
         [25]    Tsai H, Huang L, Salakhutdinov R. Learning robust visual-semanticembeddings. In: Proc. of the IEEE Int’l Conf. on Computer
             Vision. 2017. 3571−3580.
         [26]    Liu  S, Long  M, Wang J,  Jordan M.  Generalized zero-shot learning with  deepcalibration network.  In:  Proc.  of  the Advances in
             Neural Information Processing Systems. 2018. 2005−2015.
         [27]    Goldberg D, Nichols D, Oki B, Terry D. Using collaborative filtering to weave aninformation tapestry. Communications of the
             ACM, 1992,35(12):61−70.
         [28]    Linden G, Smith B, York J. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 2003,
             7(1):76−80.
         [29]    Pazzani MJ, Billsus D. Content-based recommendation systems. In: Proc. of the Adaptive Web. Berlin, Heidelberg: Springer, 2007.
             325−341.
         [30]    Deng AL, Zhu YY, Shi BL. A collaborative filtering recommendation algorithm based on item rating prediction. Ruan Jian Xue
             Bao/Journal of Software, 2003,14(9):1621−1628 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/14/1621.htm
         [31]    Ungar L, Foster D. Clustering methods for collaborative filtering. In: Proc. of the AAAI Workshop on Recommendation Systems,
             Vol.1. 1998. 114−129.
         [32]    Vozalis M, Margaritis K. Using SVD and demographic data for the enhancementof generalized collaborative filtering. Information
             Sciences, 2007,177(15):3017−3037.
         [33]    Kampffmeyer M, Chen Y, Liang X, Wang H, Zhang Y, Xing E. Rethinking knowledge graph propagation for zero-shot learning. In:
             Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2019. 11487−11496.
         [34]    Xiao J, Hays J, Ehinger K, Oliva A, Torralba A. Sun database: Large-scale scene recognition from abbey to zoo. In: Proc. of the
             2010 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. IEEE, 2010. 3485−3492.
         [35]    Wah C, Branson S, Welinder P, Perona P, Belongie S. The caltech-ucsdbirds-200-2011 dataset. Technical Report, CNS-TR-2011-
             001, 2011.
         [36]    Deng J, Dong W, Socher R, Li L, Li K, Li F. Imagenet: A large-scale hierarchical image database. In: Proc. of the IEEE Conf. on
             Computer Vision and Pattern Recognition. IEEE, 2009. 248−255.
         [37]    He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proc. of the IEEE Conf. on Computer Vision and
             Pattern Recognition. 2016. 770−778.
         [38]    Lampert CH, Nickisch H, Harmeling S. Learning to detect unseen object classes by between-class attribute transfer. In: Proc. of the
             IEEE Conf. on Computer Vision and Pattern Recognition. IEEE, 2009. 951−958.
         [39]    Frome A, Corrado G, Shlens J, Bengio S, Dean J, Mikolovet T. Devise: A deep visual-semantic embedding model. In: Proc. of the
             Advances in Neural Information Processing Systems. 2013.
         [40]    Norouzi M, Mikolov T, Bengio S, Singer Y, Shlens J, Frome A, Corrado G, Dean J. Zero-shot learning by convex combination of
             semantic embeddings. arXivpreprint arXiv:1312.5650, 2013.
   185   186   187   188   189   190   191   192   193   194   195