Page 190 - 《软件学报》2021年第9期
P. 190
2814 Journal of Software 软件学报 Vol.32, No.9, September 2021
[16] Kodirov E, Xiang T, Fu Z, Gong S. Unsupervised domain adaptation for zero-shot learning. In: Proc. of the IEEE Int’l Conf. on
Computer Vision. 2015. 2452−2460.
[17] Chen L, Zhang H, Xiao J, Liu W, Chang S. Zero-shot visual recognition using semantics-preserving adversarial embedding
networks. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 1043−1052.
[18] Lampert CH, Nickisch H, Harmeling S. Attribute-based classification for zero-shot visual object categorization. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 2013,36(3):453−465.
[19] Li Y, Zhang J, Zhang J, Huang K. Discriminative learning of latent features for zero-shot recognition. In: Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition. 2018. 7463−7471.
[20] Radovanovic M, Nanopoulos A, Ivanovic M. Hubs in space: Popular nearestneighbors in high-dimensional data. Journal of
Machine Learning Research, 2010,11(Sept.):2487−2531.
[21] Wang X, Ye Y, Gupta A. Zero-shot recognition via semantic embeddings andknowledge graphs. In: Proc. of the IEEE Conf. on
Computer Visionand Pattern Recognition. 2018. 6857−6866.
[22] Zhang L, Xiang T, Gong S. Learning a deep embedding model for zero-shotlearning. In: Proc. of the IEEE Conf. on Computer
Vision and Patternrecognition. 2017. 2021−2030.
[23] Changpinyo S, Chao WL, Gong B, Sha F. Classifier and exemplar synthesis forzero-shot learning. Int’l Journal of Computer Vision,
2020,128(1):166−201.
[24] Changpinyo S, Chao WL, Sha F. Predicting visual exemplars of unseen classesfor zero-shot learning. In: Proc. of the IEEE Int’l
Conf. on Computer Vision. 2017. 3476−3485.
[25] Tsai H, Huang L, Salakhutdinov R. Learning robust visual-semanticembeddings. In: Proc. of the IEEE Int’l Conf. on Computer
Vision. 2017. 3571−3580.
[26] Liu S, Long M, Wang J, Jordan M. Generalized zero-shot learning with deepcalibration network. In: Proc. of the Advances in
Neural Information Processing Systems. 2018. 2005−2015.
[27] Goldberg D, Nichols D, Oki B, Terry D. Using collaborative filtering to weave aninformation tapestry. Communications of the
ACM, 1992,35(12):61−70.
[28] Linden G, Smith B, York J. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 2003,
7(1):76−80.
[29] Pazzani MJ, Billsus D. Content-based recommendation systems. In: Proc. of the Adaptive Web. Berlin, Heidelberg: Springer, 2007.
325−341.
[30] Deng AL, Zhu YY, Shi BL. A collaborative filtering recommendation algorithm based on item rating prediction. Ruan Jian Xue
Bao/Journal of Software, 2003,14(9):1621−1628 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/14/1621.htm
[31] Ungar L, Foster D. Clustering methods for collaborative filtering. In: Proc. of the AAAI Workshop on Recommendation Systems,
Vol.1. 1998. 114−129.
[32] Vozalis M, Margaritis K. Using SVD and demographic data for the enhancementof generalized collaborative filtering. Information
Sciences, 2007,177(15):3017−3037.
[33] Kampffmeyer M, Chen Y, Liang X, Wang H, Zhang Y, Xing E. Rethinking knowledge graph propagation for zero-shot learning. In:
Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2019. 11487−11496.
[34] Xiao J, Hays J, Ehinger K, Oliva A, Torralba A. Sun database: Large-scale scene recognition from abbey to zoo. In: Proc. of the
2010 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. IEEE, 2010. 3485−3492.
[35] Wah C, Branson S, Welinder P, Perona P, Belongie S. The caltech-ucsdbirds-200-2011 dataset. Technical Report, CNS-TR-2011-
001, 2011.
[36] Deng J, Dong W, Socher R, Li L, Li K, Li F. Imagenet: A large-scale hierarchical image database. In: Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition. IEEE, 2009. 248−255.
[37] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition. 2016. 770−778.
[38] Lampert CH, Nickisch H, Harmeling S. Learning to detect unseen object classes by between-class attribute transfer. In: Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition. IEEE, 2009. 951−958.
[39] Frome A, Corrado G, Shlens J, Bengio S, Dean J, Mikolovet T. Devise: A deep visual-semantic embedding model. In: Proc. of the
Advances in Neural Information Processing Systems. 2013.
[40] Norouzi M, Mikolov T, Bengio S, Singer Y, Shlens J, Frome A, Corrado G, Dean J. Zero-shot learning by convex combination of
semantic embeddings. arXivpreprint arXiv:1312.5650, 2013.