Page 143 - 《软件学报》2021年第9期
P. 143

肖进胜  等:面向图像场景转换的改进型生成对抗网络                                                        2767


          [7]    Wang KF, Zuo WM, Tan Y, et al. Generative adversarial networks: From generating data to creating intelligence. Acta Automatica
             Sinica, 2018,44(5):769−774 (in Chinese with English abstract).
          [8]    Wang WL, LI ZR. Advances in generative adversarial network. Journal on Communications, 2018,39(2):135−148 (in Chinese with
             English abstract).
          [9]    Xiao  J,  Tian H, Zhang Y,  et  al.  Blind video denoising via  texture-aware noise  estimation. Computer  Vision  and Image
             Understanding, 2018,169(4):1−13.
         [10]    Freedman D,  Kisilev P.  Object-to-object  color  transfer: Optimal flows  and smsp  transformations. In: Proc. of the 2010  IEEE
             Computer Society Conf. on Computer Vision and Pattern Recognition. IEEE, 2010. 287−294.
         [11]    Laffont PY, Ren Z, Tao X, et al. Transient attributes for high-level understanding and editing of outdoor scenes. ACM Trans. on
             Graphics, 2014,33(4):149.
         [12]    Tsai YH,  Shen X,  Lin Z,  et  al. Sky is not  the limit:  Semantic-aware sky replacement.  ACM  Trans. on  Graphics, 2016,35(4):
             149:1−149:11.
         [13]    Gatys LA, Ecker AS, Bethge M. Image style transfer using convolutional neural networks. In: Proc. of the IEEE Conf. on Computer
             Vision and Pattern Recognition. 2016. 2414−2423.
         [14]    Li Y, Fang C, Yang J, et al. Diversified texture synthesis with feed-forward networks. In: Proc. of the IEEE Conf. on Computer
             Vision and Pattern Recognition. 2017. 3920−3928.
         [15]    Chen D, Yuan L, Liao J, et al. Stylebank: An explicit representation for neural image style transfer. In: Proc. of the IEEE Conf. on
             Computer Vision and Pattern Recognition. 2017. 1897−1906.
         [16]    Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization. In: Proc. of the IEEE Int’l Conf. on
             Computer Vision. 2017. 1501−1510.
         [17]    Li S, Xu X, Nie L, et al. Laplacian-steered neural style transfer. In: Proc. of the 25th ACM Int’l Conf. on Multimedia. ACM, 2017.
             1716−1724.
         [18]    Wang TC, Liu MY, Zhu JY, et al. High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proc. of
             the IEEE Conf. on Computer Vision and Pattern Recognition. 2018. 8798−8807.
         [19]    Liu MY, Tuzel O. Coupled generative adversarial networks. In: Proc. of the 30th Conf. on Neural Information Processing Systems.
             Barcelona, 2016. 469−477.
         [20]    Shrivastava A, Pfister T, Tuzel O, et al. Learning from simulated and unsupervised images through adversarial training. In: Proc. of
             the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 2107−2116.
         [21]    Zhu JY, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proc. of the
             IEEE Int’l Conf. on Computer Vision. 2017. 2223−2232.
         [22]    Huang X, Liu MY, Belongie S, et al. Multimodal unsupervised image-to-image translation. In: Proc. of the European Conf. on
             Computer Vision. 2018. 172−189.
         [23]    Luan F, Paris S,  Shechtman  E,  et al. Deep  photo style transfer. In:  Proc.  of  the  IEEE Conf.  on Computer Vision and  Pattern
             Recognition. 2017. 4990−4998.
         [24]    Mirza M, Osindero S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014.
         [25]    Bousmalis K, Silberman N, Dohan D, et al. Unsupervised pixel-level domain adaptation with generative adversarial networks. In:
             Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2017. 3722−3731.
         [26]    Chen  Q,  Koltun  V. Photographic image synthesis  with  cascaded refinement networks. In: Proc. of the IEEE Int’l  Conf. on
             Computer Vision. 2017. 1511−1520.
         [27]    Dosovitskiy A, Brox T. Generating images with perceptual similarity metrics based on deep networks. In: Proc. of the 30th Conf.
             on Neural Information Processing Systems. Barcelona, 2016. 658−666.
         [28]    Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proc. of the IEEE Conf. on Computer
             Vision and Pattern Recognition. 2015. 3431−3440.
         [29]    Chen Y, Lai YK, Liu YJ. CartoonGAN: Generative adversarial networks for photo cartoonization. In: Proc. of the IEEE Conf. on
             Computer Vision and Pattern Recognition. 2018. 9465−9474.
   138   139   140   141   142   143   144   145   146   147   148