Page 96 - 《软件学报》2021年第7期
P. 96

2014                                     Journal of Software  软件学报 Vol.32, No.7,  July 2021

                [14]    Clarke Jr EM, Grumberg O, Kroening D, et al. Model Checking. MIT Press, 2018.
                [15]    Legay A, Delahaye B, Bensalem S. Statistical model checking: An overview. In: Proc. of the Int’l Conf. on Runtime Verification.
                     Berlin, Heidelberg: Springer-Verlag, 2010. 122–135. [doi: 10.1007/978-3-642-16612-9_11]
                [16]    Du DH, Cheng B, Liu J. Statistical model checking for rare-event in safety-critical system. Ruan Jian Xue Bao/Journal of Software,
                     2015,26(2):305−320 (in  Chinese with  English  abstract). http://www.jos.org.cn/1000-9825/4783.htm [doi: 10.13328/j.cnki.jos.
                     004783]
                [17]    Zuliani P, Platzer A, Clarke EM. Bayesian statistical model checking with application to stateflow/simulink verification. Formal
                     Methods in System Design, 2013,43(2):338–367. [doi: 10.1145/1755952.1755987]
                [18]    Du DH, Zan H, Jiang KQ, Cheng B. Self-adaptive statistical model checking approach for CPS. Ruan Jian Xue Bao/Journal of
                     Software, 2017,28(5):1128−1143 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5216.htm [doi: 10.13328/j.
                     cnki.jos.005216]
                [19]    Davarzani S, Nagahi M, Tidwell M, et al. Pattern recognition using machine learning for corn and Soybean yield prediction. In:
                     Proc. of the 2020 IISE. New Orleans, 2020.
                [20]    Julius AA, Pappas GJ. Approximations of stochastic hybrid systems. IEEE Trans. on Automatic Control, 2009,54(6):1193–1203.
                     [doi: 10.1109/TAC.2009.2019791]
                [21]    David A, Larsen KG, Legay A,  et al. Statistical  model  checking of dynamic networks of  stochastic hybrid  automata. Francisco
                     Javier Fuente Fernández, 2014,66:91104. [doi: 10.14279/tuj.eceasst.66.893.878]
                [22]    Llerena YRS, Su G, Rosenblum DS. Probabilistic model checking of perturbed MDPs with applications to cloud computing. In:
                     Proc. of the 11th Joint Meeting on Foundations of Software Engineering. ACM, 2017. 454–464. [doi: 10.1145/3106237.3106301]
                [23]    Zhao X, Robu V, Flynn D, et al. Probabilistic model checking of robots deployed in extreme environments. In: Proc. of the AAAI
                     Conf. on Artificial Intelligence. 2019(33):8066–8074. [doi: 10.1609/aaai.v33i01.33018066]
                [24]    Gal Y. Uncertainty in deep learning [Ph.D. Thesis]. University of Cambridge, 2016.
                [25]    McAllister R, Gal Y, Kendall A, et al. Concrete problems for autonomous vehicle safety: Advantages of Bayesian deep learning. In:
                     Proc. of the Int’l Joint Conf. on Artificial Intelligence. 2017. [doi: 10.24963/ijcai.2017/661]
                [26]    Yamazaki S, Miyajima C, Yurtsever E, et al. Integrating driving behavior and traffic context through signal symbolization. In: Proc.
                     of the IEEE Intelligent Vehicles Symp. (IV). IEEE, 2016. 642–647. [doi: 10.1109/IVS.2016.7535455]
                [27]    Yurtsever E, Liu Y, Lambert J, et al. Risky action recognition in lane change video clips using deep spatio temporal networks with
                     segmentation mask transfer. In: Proc. of the IEEE Intelligent Transportation Systems Conf. (ITSC). IEEE, 2019. 3100–3107. [doi:
                     10.1109/ITSC.2019.8917362]
                [28]    Wu M, Wicker M, Ruan W, et al. A gamebased approximate verification of deep neural networks with provable guarantees. Theory
                     Computer Science, 2020,807:298–329. [doi: 10.1016/j.tcs.2019.05.046]
                [29]    Wicker M, Laurenti L, Patane A, et al. Probabilistic safety for bayesian neural networks. CoRR, 2020, abs/2004.10281.
                [30]    Huang  X, Kwiatkowska  M, Olejnik M. Reasoning about cognitive  trust in  stochastic multiagent  systems. ACM Trans.  on
                     Compututation Logic, 2019,20(4):21:121:64. [doi: 10.1145/3329123]
                [31]    Sun Y, Zhou Y, Maskell S, et al. Reliability validation of learning enabled vehicle tracking. In: Proc. of the IEEE Int’l Conf. on
                     Robotics and Automation (ICRA). 2020. 9390–9396. [doi: 10.1109/ICRA40945.2020.9196932]
                [32]    Lederman G, Rabe MN, Seshia S, et al. Learning heuristics for quantified boolean formulas through reinforcement learning. In:
                     Proc. of the Int’l Conf. on Learning Representations, ICLR. 2020.
                [33]    Dreossi T, Donzé A, Seshia SA. Compositional falsification of cyber physical systems with machine learning components. Journal
                     of Automated Reasoning, 2019,63(4):10311053. [doi: 10.1007/s10817-018-09509-5]
                [34]    Geng X, Liang H, Yu B, et al. A scenario adaptive driving behavior prediction approach to urban autonomous driving. Applied
                     Sciences, 2017,7(4):426. [doi: 10.3390/app7040426]
                [35]    Augustynowicz A. Preliminary classification of driving style with objective rank method. Int’l Journal of Automotive Technology,
                     2009,10(5):607–610. [doi: 10.1007/s12239-009-0071-8]
                [36]    Hart S, Sharir  M, Pnueli  A.  Termination of probabilistic  concurrent programs: (extended  abstract). In: Proc. of the Symp. on
                     Principles of Programming Languages. 1982. 16. [doi: 10.1145/582153.582154]
   91   92   93   94   95   96   97   98   99   100   101