Page 96 - 《软件学报》2021年第7期
P. 96
2014 Journal of Software 软件学报 Vol.32, No.7, July 2021
[14] Clarke Jr EM, Grumberg O, Kroening D, et al. Model Checking. MIT Press, 2018.
[15] Legay A, Delahaye B, Bensalem S. Statistical model checking: An overview. In: Proc. of the Int’l Conf. on Runtime Verification.
Berlin, Heidelberg: Springer-Verlag, 2010. 122–135. [doi: 10.1007/978-3-642-16612-9_11]
[16] Du DH, Cheng B, Liu J. Statistical model checking for rare-event in safety-critical system. Ruan Jian Xue Bao/Journal of Software,
2015,26(2):305−320 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4783.htm [doi: 10.13328/j.cnki.jos.
004783]
[17] Zuliani P, Platzer A, Clarke EM. Bayesian statistical model checking with application to stateflow/simulink verification. Formal
Methods in System Design, 2013,43(2):338–367. [doi: 10.1145/1755952.1755987]
[18] Du DH, Zan H, Jiang KQ, Cheng B. Self-adaptive statistical model checking approach for CPS. Ruan Jian Xue Bao/Journal of
Software, 2017,28(5):1128−1143 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5216.htm [doi: 10.13328/j.
cnki.jos.005216]
[19] Davarzani S, Nagahi M, Tidwell M, et al. Pattern recognition using machine learning for corn and Soybean yield prediction. In:
Proc. of the 2020 IISE. New Orleans, 2020.
[20] Julius AA, Pappas GJ. Approximations of stochastic hybrid systems. IEEE Trans. on Automatic Control, 2009,54(6):1193–1203.
[doi: 10.1109/TAC.2009.2019791]
[21] David A, Larsen KG, Legay A, et al. Statistical model checking of dynamic networks of stochastic hybrid automata. Francisco
Javier Fuente Fernández, 2014,66:91104. [doi: 10.14279/tuj.eceasst.66.893.878]
[22] Llerena YRS, Su G, Rosenblum DS. Probabilistic model checking of perturbed MDPs with applications to cloud computing. In:
Proc. of the 11th Joint Meeting on Foundations of Software Engineering. ACM, 2017. 454–464. [doi: 10.1145/3106237.3106301]
[23] Zhao X, Robu V, Flynn D, et al. Probabilistic model checking of robots deployed in extreme environments. In: Proc. of the AAAI
Conf. on Artificial Intelligence. 2019(33):8066–8074. [doi: 10.1609/aaai.v33i01.33018066]
[24] Gal Y. Uncertainty in deep learning [Ph.D. Thesis]. University of Cambridge, 2016.
[25] McAllister R, Gal Y, Kendall A, et al. Concrete problems for autonomous vehicle safety: Advantages of Bayesian deep learning. In:
Proc. of the Int’l Joint Conf. on Artificial Intelligence. 2017. [doi: 10.24963/ijcai.2017/661]
[26] Yamazaki S, Miyajima C, Yurtsever E, et al. Integrating driving behavior and traffic context through signal symbolization. In: Proc.
of the IEEE Intelligent Vehicles Symp. (IV). IEEE, 2016. 642–647. [doi: 10.1109/IVS.2016.7535455]
[27] Yurtsever E, Liu Y, Lambert J, et al. Risky action recognition in lane change video clips using deep spatio temporal networks with
segmentation mask transfer. In: Proc. of the IEEE Intelligent Transportation Systems Conf. (ITSC). IEEE, 2019. 3100–3107. [doi:
10.1109/ITSC.2019.8917362]
[28] Wu M, Wicker M, Ruan W, et al. A gamebased approximate verification of deep neural networks with provable guarantees. Theory
Computer Science, 2020,807:298–329. [doi: 10.1016/j.tcs.2019.05.046]
[29] Wicker M, Laurenti L, Patane A, et al. Probabilistic safety for bayesian neural networks. CoRR, 2020, abs/2004.10281.
[30] Huang X, Kwiatkowska M, Olejnik M. Reasoning about cognitive trust in stochastic multiagent systems. ACM Trans. on
Compututation Logic, 2019,20(4):21:121:64. [doi: 10.1145/3329123]
[31] Sun Y, Zhou Y, Maskell S, et al. Reliability validation of learning enabled vehicle tracking. In: Proc. of the IEEE Int’l Conf. on
Robotics and Automation (ICRA). 2020. 9390–9396. [doi: 10.1109/ICRA40945.2020.9196932]
[32] Lederman G, Rabe MN, Seshia S, et al. Learning heuristics for quantified boolean formulas through reinforcement learning. In:
Proc. of the Int’l Conf. on Learning Representations, ICLR. 2020.
[33] Dreossi T, Donzé A, Seshia SA. Compositional falsification of cyber physical systems with machine learning components. Journal
of Automated Reasoning, 2019,63(4):10311053. [doi: 10.1007/s10817-018-09509-5]
[34] Geng X, Liang H, Yu B, et al. A scenario adaptive driving behavior prediction approach to urban autonomous driving. Applied
Sciences, 2017,7(4):426. [doi: 10.3390/app7040426]
[35] Augustynowicz A. Preliminary classification of driving style with objective rank method. Int’l Journal of Automotive Technology,
2009,10(5):607–610. [doi: 10.1007/s12239-009-0071-8]
[36] Hart S, Sharir M, Pnueli A. Termination of probabilistic concurrent programs: (extended abstract). In: Proc. of the Symp. on
Principles of Programming Languages. 1982. 16. [doi: 10.1145/582153.582154]