Page 367 - 《软件学报》2021年第7期
P. 367

姚前  等:区块链系统中身份管理技术研究综述                                                          2285


                [64]    Rivest RL, Shamir A, Tauman Y. How to leak a secret. In: Proc. of the Int’l Conf. on the Theory and Application of Cryptology
                     and Information Security. Berlin: Springer-Verlag, 2001. 552–565.
                [65]    Chaum D, Heyst E. Group signatures. In: Proc. of the Workshop on the Theory and Application of of Cryptographic Techniques.
                     Berlin: Springer-Verlag, 1991. 257–265.
                [66]    Fujisaki  E, Suzuki  K.  Traceable ring signature.  In: Proc. of the Int’l Workshop on Public  Key  Cryptography.  Berlin: Springer-
                     Verlag, 2007. 181–200.
                [67]    Cramer R, Damgård I, Schoenmakers B. Proofs of partial knowledge and simplified design of witness hiding protocols. In: Proc. of
                     the CRYPTO. Berlin: Springer-Verlag, 1994. 174–187.
                [68]    Back A. Ring signature efficiency. https://bitcointalk.org/index.php?topic=972541.msg10619684#msg10619684
                [69]    Liu JK, Wei VK, Wong DS. Linkable spontaneous anonymous group signature for ad hoc groups. In: Proc. of the Australasian Conf.
                     on Information Security and Privacy. Berlin: Springer-Verlag, 2004. 325–335.
                [70]    Goodell B, Noether S. Compact linkable ring signatures and applications. https://lab.getmonero.org/pubs/MRL-0011.pdf
                [71]    Moser M,  Soska K, Heilman E,  et al. An empirical analysis  of traceability in  the Monero  blockchain. Privacy Enhancing
                     Technologies, 2018,(3):143–163.
                [72]    Kumar A, Fischer  C,  Tople S,  et al.  A traceability  analysis of  Monero’s blockchain.  In:  Proc. of the Symp. on  Research in
                     Computer Security. Berlin: Springer-Verlag, 2017. 153–173.
                [73]    Yu J,  Au MH,  Esteves-Verissimo P.  Re-thinking untraceability  in the  CryptoNote-style blockchain In: Proc. of the 32nd IEEE
                     Computer Security Foundations Symp. IEEE, 2019. 94–9413.
                [74]    Yuen TH, Sun SF, Liu JK, et al. Ring CT 3.0 for blockchain confidential transaction: Shorter size and stronger security. In: Proc. of
                     the Int’l Conf. on Financial Cryptography and Data Security. Berlin: Springer-Verlag, 2020. 464–483.
                [75]    Zcash Foundation and Electric Coin Company. Zcash. https://z.cash/zh/get-started/
                [76]    Sander T, Ta-Shma A. Auditable, anonymous electronic cash. In: Proc. of the CRYPTO. Berlin: Springer-Verlag, 1999. 555–572.
                [77]    Miers I, Garman C, Green M, et al. Zerocoin: Anonymous distributed e-cash from bitcoin. In: Proc. of the IEEE Symp. on Security
                     and Privacy. IEEE, 2013. 397–411.
                [78]    Sasson EB, Chiesa A, Garman C, et al. Zerocash: Decentralized anonymous payments from bitcoin. In: Proc. of the IEEE Symp. on
                     Security and Privacy. IEEE, 2014. 459–474.
                [79]    Zcash Foundation and Electric Coin Company. Zcash Documentation. https://zcash.readthedocs.io/en/latest/
                [80]    Groth J. Short pairing-based non-interactive zero-knowledge arguments. In: Proc. of the Int’l Conf. on the Theory and Application
                     of Cryptology and Information Security. Berlin: Springer-Verlag, 2010. 321–340.
                [81]    Lipmaa H. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Proc. of the Theory of
                     Cryptography Conf. Berlin: Springer-Verlag, 2012. 169–189.
                [82]    Bitansky N, Chiesa A, Ishai Y, et al. Succinct non-interactive arguments via linear interactive proofs. In: Proc. of the Theory of
                     Cryptography Conf. Berlin: Springer-Verlag, 2013. 315–333.
                [83]    Gennaro R, Gentry C, Parno B, et al. Quadratic span programs and succinct NIZKs without PCPs. In: Proc. of the Annual Int’l
                     Conf. on the Theory and Applications of Cryptographic Techniques. Berlin: Springer-Verlag, 2013. 626–645.
                [84]    Parno B, Howell J, Gentry C, et al. Pinocchio: Nearly practical verifiable computation. In: Proc. of the IEEE Symp. on Security and
                     Privacy. IEEE, 2013. 238–252.
                [85]    Ben-Sasson E, Chiesa A, Genkin D, et al. SNARKs for C: Verifying program executions succinctly and in zero knowledge. In: Proc.
                     of the CRYPTO. Berlin: Springer-Verlag, 2013. 90–108.
                [86]    Lipmaa H. Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting codes. In: Proc. of
                     the Int’l Conf. on the Theory and Application of Cryptology and Information Security. Berlin: Springer-Verlag, 2013. 41–60.
                [87]    Ben-Sasson E, Chiesa A, Tromer E, et al. Succinct non-interactive arguments for a von neumann architecture. In: Proc. of the 23rd
                     USENIX Conf. on Security. New York: ACM, 2014. 781–796.
                [88]    Bellare M, Boldyreva A,  Desai A,  et al.  Key-privacy in public-key  encryption. In: Proc. of the  Int’l  Conf. on the  Theory  and
                     Application of Cryptology and Information Security. Berlin: Springer-Verlag, 2001. 566–582.
                [89]    Bernstein DJ.  Curve 25519:  New Diffie-Hellman speed records. In: Proc. of the Int’l Workshop on Public  Key  Cryptography.
                     Berlin: Springer-Verlag, 2006. 207–228.
   362   363   364   365   366   367   368   369   370