Page 367 - 《软件学报》2021年第7期
P. 367
姚前 等:区块链系统中身份管理技术研究综述 2285
[64] Rivest RL, Shamir A, Tauman Y. How to leak a secret. In: Proc. of the Int’l Conf. on the Theory and Application of Cryptology
and Information Security. Berlin: Springer-Verlag, 2001. 552–565.
[65] Chaum D, Heyst E. Group signatures. In: Proc. of the Workshop on the Theory and Application of of Cryptographic Techniques.
Berlin: Springer-Verlag, 1991. 257–265.
[66] Fujisaki E, Suzuki K. Traceable ring signature. In: Proc. of the Int’l Workshop on Public Key Cryptography. Berlin: Springer-
Verlag, 2007. 181–200.
[67] Cramer R, Damgård I, Schoenmakers B. Proofs of partial knowledge and simplified design of witness hiding protocols. In: Proc. of
the CRYPTO. Berlin: Springer-Verlag, 1994. 174–187.
[68] Back A. Ring signature efficiency. https://bitcointalk.org/index.php?topic=972541.msg10619684#msg10619684
[69] Liu JK, Wei VK, Wong DS. Linkable spontaneous anonymous group signature for ad hoc groups. In: Proc. of the Australasian Conf.
on Information Security and Privacy. Berlin: Springer-Verlag, 2004. 325–335.
[70] Goodell B, Noether S. Compact linkable ring signatures and applications. https://lab.getmonero.org/pubs/MRL-0011.pdf
[71] Moser M, Soska K, Heilman E, et al. An empirical analysis of traceability in the Monero blockchain. Privacy Enhancing
Technologies, 2018,(3):143–163.
[72] Kumar A, Fischer C, Tople S, et al. A traceability analysis of Monero’s blockchain. In: Proc. of the Symp. on Research in
Computer Security. Berlin: Springer-Verlag, 2017. 153–173.
[73] Yu J, Au MH, Esteves-Verissimo P. Re-thinking untraceability in the CryptoNote-style blockchain In: Proc. of the 32nd IEEE
Computer Security Foundations Symp. IEEE, 2019. 94–9413.
[74] Yuen TH, Sun SF, Liu JK, et al. Ring CT 3.0 for blockchain confidential transaction: Shorter size and stronger security. In: Proc. of
the Int’l Conf. on Financial Cryptography and Data Security. Berlin: Springer-Verlag, 2020. 464–483.
[75] Zcash Foundation and Electric Coin Company. Zcash. https://z.cash/zh/get-started/
[76] Sander T, Ta-Shma A. Auditable, anonymous electronic cash. In: Proc. of the CRYPTO. Berlin: Springer-Verlag, 1999. 555–572.
[77] Miers I, Garman C, Green M, et al. Zerocoin: Anonymous distributed e-cash from bitcoin. In: Proc. of the IEEE Symp. on Security
and Privacy. IEEE, 2013. 397–411.
[78] Sasson EB, Chiesa A, Garman C, et al. Zerocash: Decentralized anonymous payments from bitcoin. In: Proc. of the IEEE Symp. on
Security and Privacy. IEEE, 2014. 459–474.
[79] Zcash Foundation and Electric Coin Company. Zcash Documentation. https://zcash.readthedocs.io/en/latest/
[80] Groth J. Short pairing-based non-interactive zero-knowledge arguments. In: Proc. of the Int’l Conf. on the Theory and Application
of Cryptology and Information Security. Berlin: Springer-Verlag, 2010. 321–340.
[81] Lipmaa H. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Proc. of the Theory of
Cryptography Conf. Berlin: Springer-Verlag, 2012. 169–189.
[82] Bitansky N, Chiesa A, Ishai Y, et al. Succinct non-interactive arguments via linear interactive proofs. In: Proc. of the Theory of
Cryptography Conf. Berlin: Springer-Verlag, 2013. 315–333.
[83] Gennaro R, Gentry C, Parno B, et al. Quadratic span programs and succinct NIZKs without PCPs. In: Proc. of the Annual Int’l
Conf. on the Theory and Applications of Cryptographic Techniques. Berlin: Springer-Verlag, 2013. 626–645.
[84] Parno B, Howell J, Gentry C, et al. Pinocchio: Nearly practical verifiable computation. In: Proc. of the IEEE Symp. on Security and
Privacy. IEEE, 2013. 238–252.
[85] Ben-Sasson E, Chiesa A, Genkin D, et al. SNARKs for C: Verifying program executions succinctly and in zero knowledge. In: Proc.
of the CRYPTO. Berlin: Springer-Verlag, 2013. 90–108.
[86] Lipmaa H. Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting codes. In: Proc. of
the Int’l Conf. on the Theory and Application of Cryptology and Information Security. Berlin: Springer-Verlag, 2013. 41–60.
[87] Ben-Sasson E, Chiesa A, Tromer E, et al. Succinct non-interactive arguments for a von neumann architecture. In: Proc. of the 23rd
USENIX Conf. on Security. New York: ACM, 2014. 781–796.
[88] Bellare M, Boldyreva A, Desai A, et al. Key-privacy in public-key encryption. In: Proc. of the Int’l Conf. on the Theory and
Application of Cryptology and Information Security. Berlin: Springer-Verlag, 2001. 566–582.
[89] Bernstein DJ. Curve 25519: New Diffie-Hellman speed records. In: Proc. of the Int’l Workshop on Public Key Cryptography.
Berlin: Springer-Verlag, 2006. 207–228.