Page 366 - 《软件学报》2021年第7期
P. 366

2284                                     Journal of Software  软件学报 Vol.32, No.7,  July 2021

                [36]    Ron D, Shamir A. Quantitative analysis of the full bitcoin transaction graph. In: Proc. of the Int’l Conf. on Financial Cryptography
                     and Data Security 2013. Berlin: Springer-Verlag, 2013. 6–24.
                [37]    Biryukov A, Khovratovich D, Pustogarov I. Deanonymisation of clients in bitcoin P2P network. In: Proc. of the ACM Conf. on
                     Computer and Communications Security. New York: ACM, 2014. 15–29.
                [38]    Gao F, Mao HL, Wu Z, et al. Lightweight transaction tracing technology for bitcoin. Chinese Journal of Computers, 2018,41(5):
                     989–1004 (in Chinese with English abstract).
                [39]    Meiklejohn S, Pomarole M, Jordan G, et al. A fistful of bitcoins: Characterizing payments among men with no names. In: Proc. of
                     the ACM Conf. on Internet Measurement Conf. New York: ACM, 2013. 127–140.
                [40]    Zhao C, Guan Y. A graph-based investigation of bitcoin transactions. In: Proc. of the IFIP Int’l Conf. on Digital Forensics. Berlin:
                     Springer-Verlag, 2015. 79–95.
                [41]    Zheng B, Zhu L, Shen M, et al. Malicious bitcoin transaction tracing using incidence relation clustering. In: Proc. of the Int’l Conf.
                     on Mobile Networks and Management. Berlin: Springer-Verlag, 2017. 313–323.
                [42]    Chen T, Zhun YX. Understanding Ethereum via graph analysis. In: Proc. of the IEEE Conf. on Computer Communications. IEEE,
                     2018. 1484–1492.
                [43]    Spagnuolo M,  Maggi F, Zanero S.  Bitiodine:  Extracting intelligence from the bitcoin network. In: Proc. of the Int’l  Conf. on
                     Financial Cryptography and Data Security. Berlin: Springer-Verlag, 2014. 457–468.
                [44]    Blockchain. https://Blockchain.info/wallet
                [45]    Bitcoin Fog. Accessing bitcoin fog. http://bitcoinfog.info/
                [46]    Bonneau J, Narayanan A, Miller A, et al. Mixcoin: Anonymity for bitcoin with accountable mixes. In: Proc. of the Int’l Conf. on
                     Financial Cryptography and Data Security. Berlin: Springer-Verlag, 2014. 486–504.
                [47]    Valenta L, Rowan B. Blindcoin: Blinded, accountable mixes for bitcoin. In: Proc. of the Int’l Conf. on Financial Cryptography and
                     Data Security. Berlin: Springer-Verlag, 2015. 112–126.
                [48]    Chaum D. Blind signatures for untraceable payments. In: Proc. of the CRYPTO. Berlin: Springer-Verlag, 1983. 199–203.
                [49]    Heilman E, Baldimtsi F, Goldberg S. Blindly signed contracts: Anonymous on-blockchain and off-blockchain bitcoin transactions.
                     In: Proc. of the Int’l Conf. on Financial Cryptography and Data Security. Berlin: Springer-Verlag, 2016. 43–60.
                [50]    Maxwell G. CoinJoin: Bitcoin privacy for the real world. https://bitcointalk.org/index.php?topic=279249.0
                [51]    Ruffing  T, Moreno-Sanchez P, Kate  A.  CoinShuffle:  Practical decentralized  coin  mixing for bitcoin.  In: Proc. of the  European
                     Symp on Research in Computer Security. Berlin: Springer-Verlag, 2014. 345–364.
                [52]    Corrigan-Gibbs  H,  Ford B. Dissent: Accountable anonymous  group messaging.  In: Proc. of  the ACM Conf. on Computer and
                     Communications Security. New York: ACM, 2010. 340–350.
                [53]    Chaum D. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM, 1981,24(2):84–90.
                [54]    Ruffing T, Moreno-Sanchez P, Kate A. P2P Mixing and unlinkable Bitcoin transactions. In: Proc. of the Network and Distributed
                     System Security Symp. Internet Society, 2017. 43–58.
                [55]    Chaum  D.  The dining  cryptographers problem: Unconditional sender  and recipient untraceability. Journal of  Cryptology, 1988,
                     1(1):65–75.
                [56]    Saxena  A,  Misra J,  Dhar A. Increasing anonymity in bitcoin. In: Proc. of the Int’l  Conf. on Financial  Cryptography  and  Data
                     Security. Berlin: Springer-Verlag, 2014. 122–139.
                [57]    Wang ZY, Liu JW. Full anonymous blockchain based on aggregate signature and confidential transaction. Journal of Computer
                     Research and Development, 2018,55(10):2185–2198 (in Chinese with English abstract).
                [58]    Saberhagen NV. CryptoNote v2.0. https://cryptonote.org/whitepaper.pdf
                [59]    NIST, FIPS 186-4, Digital signature standard. https://csrc.nist.gov/publications/detail/fips/186/4/final
                [60]    Bernstein DJ, Duif  NN, Lange  T,  et al. High-speed  high-security  signatures. Journal  of Cryptographic Engineering,  2012,2(2):
                     77–89.
                [61]    Bernstein DJ, Lange T. Faster addition and doubling on elliptic curves. In: Proc. of the Int’l Conf. on the Theory and Application of
                     Cryptology and Information Security. Berlin: Springer-Verlag, 2007. 29–50.
                [62]    Noether S, Mackenzie A. Ring confidential transactions. Ledger, 2016,1:1–18.
                [63]    Noether S, Goodell B. An efficient implementation of Monero subaddress. https://lab.getmonero.org/pubs/MRL-0006.pdf
   361   362   363   364   365   366   367   368   369   370