Page 321 - 《软件学报》2021年第7期
P. 321

张献  等:基于代码自然性的切片粒度缺陷预测方法                                                        2239


                [10]    Wan Z, Xia X, Hassan AE, Lo D, Yin J, Yang X. Perceptions, expectations, and challenges in defect prediction. IEEE Trans. on
                     Software Engineering, 2018. [doi: 10.1109/TSE.2018.2877678]
                [11]    Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N. A large-scale empirical study of just-in-time quality
                     assurance. IEEE Trans. on Software Engineering, 2013,39(6):757–773.
                [12]    Miltiadis A, Barr ET,  Premkumar D,  Sutton C.  A  survey  of machine learning for big  code  and naturalness.  ACM  Computing
                     Surveys, 2018,51(4):1–37.
                [13]    Manning CD. Foundations of Statistical Natural Language Processing. Massachusetts: MIT Press, 1999.
                [14]    Ray B, Hellendoorn V, Godhane S, Tu Z, Bacchelli A, Devanbu P. On the naturalness of buggy code. In: Proc. of the 38th Int’l
                     Conf. on Software Engineering. New York: ACM Press, 2016. 428–439.
                [15]    Hindle A,  Barr  ET, Su  Z,  Gabel M,  Devanbu P.  On the naturalness of  software.  In: Proc. of the 34th Int’l  Conf. on Software
                     Engineering. Piscataway: IEEE Press, 2012. 837–847.
                [16]    Hindle A,  Barr  ET,  Gabel M, Su  Z,  Devanbu P. On the naturalness  of software.  Communications of the ACM, 2016,59(5):
                     122–131.
                [17]    Tip F. A survey of program slicing techniques. Journal of Programming Languages, 1995,3(3):1–65.
                [18]    Devanbu P.  New initiative:  The naturalness of software. In: Proc. of  the  37th Int’l Conf. on Software  Engineering. Piscataway:
                     IEEE Press, 2015. 543–546.
                [19]    Tu Z, Su Z, Devanbu P. On the localness of software. In: Proc. of the 22nd ACM SIGSOFT Int’l Symp. on Foundations of Software
                     Engineering. New York: ACM Press, 2014. 269–280.
                [20]    Franks C, Tu Z, Devanbu P, Hellendoorn V. Cacheca: A cache language model based code suggestion tool. In: Proc. of the 37th
                     Int’l Conf. on Software Engineering-Volume 2. Piscataway: IEEE Press, 2015. 705–708.
                [21]    Campbell JC, Hindle A, Amaral JN. Syntax errors just aren’t natural: Improving error reporting with language models. In: Proc. of
                     the 11th Working Conf. on Mining Software Repositories. New York: ACM Press, 2014. 252–261.
                [22]    Jimenez M. Evaluating vulnerability prediction models [Ph.D. Thesis]. Luxembourg: University of Luxembourg, 2018. https://www.
                     researchgate.net/publication/328215078
                [23]    Jimenez M, Maxime C, LeTraon Y, Papadakis M. On the impact of tokenizer and parameters on n-gram based code analysis. In:
                     Proc. of the 34th Int’l Conf. on Software Maintenance and Evolution. Piscataway: IEEE Press, 2018. 437–448.
                [24]    Li BX. Program slicing techniques and its application in object-oriented software metrics and software test [Ph.D. Thesis]. Nanjing:
                     University of Nanjing, 2000 (in Chinese with English abstract).
                [25]    Pan K, Kim S, WhiteheadJr EJ. Bug classification using program slicing metrics. In: Proc. of the 6th Int’l Workshop on Source
                     Code Analysis and Manipulation. Piscataway: IEEE Press, 2006. 31–42.
                [26]    Black S, Counsell S, Hall T, Wernick P. Using program slicing to identify faults in software. In: Proc. of the Beyond Program
                     Slicing. 2006.
                [27]    Black S, Counsell S, Hall T, Bowes D. Fault analysis in OSS based on program slicing metrics. In: Proc. of the 35th Euromicro
                     Conf. on Software Engineering and Advanced Applications. 2009. 3–10.
                [28]    Yang Y, Zhou Y, Lu H, Chen  L,  Chen Z, Xu B.  Are slice-based cohesion metrics actually  useful in effort-aware  post-release
                     fault-proneness prediction? An empirical study. IEEE Trans. on Software Engineering, 2015,41(4):331–357.
                [29]    Wang J. Software defect prediction using program slicing [MS. Thesis]. Shanghai: Shanghai Jiaotong University, 2014 (in Chinese
                     with English abstract).
                [30]    Li Z, Zou D, Xu S, Ou X, Jin H, Wang S. VulDeePecker: A deep learning-based system for vulnerability detection. In: Proc. of the
                     Network and Distributed System Security Symp. 2018.
                [31]    Malhotra R. A systematic review of machine learning techniques for software fault prediction. Applied Soft Computing, 2015,27:
                     504–518.
                [32]    Yu Q, Jiang SJ, Zhang YM, Wang XY, Gao PF, Qian JY. The impact study of class imbalance on the performance of software
                     defect prediction models. Chinese Journal of Computers, 2018(4):809–824 (in Chinese with English abstract).
                [33]    Li ZQ, Jing XY, Zhu XK, Zhang HY, Xu BW, Ying S. On the multiple sources and privacy preservation issues for heterogeneous
                     defect prediction. IEEE Trans. on Software Engineering, 2019,45(4):391–411.
   316   317   318   319   320   321   322   323   324   325   326