Page 245 - 《软件学报》2021年第7期
P. 245
牛长安 等:基于指针生成网络的代码注释自动生成模型 2163
[10] Wong E, Liu T, Tan L. Clocom: Mining existing source code for automatic comment generation. In: Proc. of the 22nd IEEE Int’l
Conf. on Software Analysis, Evolution, and Reengineering (SANER). IEEE, 2015. 380–389. [doi: 10.1109/SANER.2015.7081848]
[11] Iyer S, Konstas I, Cheung A, Zettlemoyer L. Summarizing source code using a neural attention model. In: Proc. of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2016. 2073–2083. [doi: 10.18653/v1/P16-
1195]
[12] Hu X, Li G, Xia X, Lo D, Jin Z. Deep code comment generation. In: Proc. of the 26th Conf. on Program Comprehension. 2018.
200–210. [doi: 10.1145/3196321.3196334]
[13] Hu X, Li G, Xia X, Lo D, Lu S, Jin Z. Summarizing source code with transferred API knowledge. In: Proc. of the 27th Int’l Joint
Conf. on Artificial Intelligence. 2018. 2269–2275. [doi: 10.5555/3304889.3304975]
[14] Wan Y, Zhao Z, Yang M, Xu G, Ying H, Wu J, Yu PS. Improving automatic source code summarization via deep reinforcement
learning. In: Proc. of the 33rd ACM/IEEE Int’l Conf. on Automated Software Engineering. 2018. 397–407. [doi: 10.1145/3238147.
3238206]
[15] Wei B, Li G, Xia X, Fu Z, Jin Z. Code generation as a dual task of code summarization. In: Advances in Neural Information
Processing Systems. 2019. 6559–6569.
[16] Wang X, Pollock L, Vijay-Shanker K. Automatically generating natural language descriptions for object-related statement
sequences. In: Proc. of the 24th IEEE Int’l Conf. on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017.
205–216. [doi: 10.1109/SANER.2017.7884622]
[17] Allamanis M, Peng H, Sutton C. A convolutional attention network for extreme summarization of source code. In: Proc. of the Int’l
Conf. on Machine Learning. 2016. 2091–2100.
[18] Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. In: Advances in Neural Information
Processing Systems. 2014. 3104–3112. [doi: 10.5555/2969033.2969173]
[19] Deissenboeck F, Pizka M. Concise and consistent naming. Software Quality Journal, 2006,14(3):261–282. [doi: 10.1007/s11219-
006-9219-1]
[20] Luong MT, Pham H, Manning CD. Effective approaches to attention-based neural machine translation. In: Proc. of the 2015 Conf.
on Empirical Methods in Natural Language Processing. 2015. 1412–1421.
[21] See A, Liu PJ, Manning CD. Get to the point: Summarization with pointer-generator networks. In: Proc. of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2017. 1073–1083. [doi: 10.18653/v1/P17-
1099]
[22] Movshovitz-Attias D, Cohen W. Natural language models for predicting programming comments. In: Proc. of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2013. 35–40.
[23] Koehn P, Hoang H, Birch A, Callison-Burch C, Federico M, Bertoldi N, Cowan B, Shen W, Moran C, Zens R, Dyer C, Bojar O,
Constantin A, Herbst E. Moses: Open source toolkit for statistical machine translation. In: Proc. of the 45th Annual Meeting of the
ACL on Interactive Poster and Demonstration Sessions. 2007. 177–180. [doi: 10.5555/1557769.1557821]
[24] Rush AM, Chopra S, Weston J. A neural attention model for abstractive sentence summarization. In: Proc. of the 2015 Conf. on
Empirical Methods in Natural Language Processing. 2015. 379–389. [doi: 10.18653/v1/D15-1044]
[25] Eriguchi A, Hashimoto K, Tsuruoka Y. Tree-to-sequence attentional neural machine translation. In: Proc. of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2016. 823–833. [doi: 10.18653/v1/P16-1078]
[26] Zhou Y, Yan X, Yang W, Chen T, Huang Z. Augmenting Java method comments generation with context information based on
neural networks. Journal of Systems and Software, 2019,156:328–340. [doi: 10.1016/j.jss.2019.07.087]
[27] Huang Y, Huang S, Chen H, Chen X, Zheng Z, Luo X, Jia N, Hu X, Zhou X. Towards automatically generating block comments for
code snippets. Information and Software Technology, 2020, 106373. [doi: 10.1016/j.infsof.2020.106373]
[28] Wang W, Zhang Y, Sui Y, Wan Y, Zhao Z, Wu J, Yu P, Xu G. Reinforcement-learning-guided source code summarization via
hierarchical attention. IEEE Trans. on Software Engineering, 2020. [doi: 10.1109/TSE.2020.2979701]
[29] LeClair A, Jiang S, McMillan C. A neural model for generating natural language summaries of program subroutines. In: Proc. of
the 41st IEEE/ACM Int’l Conf. on Software Engineering (ICSE). IEEE, 2019. 795–806. [doi: 10.1109/ICSE.2019.00087]