Page 245 - 《软件学报》2021年第7期
P. 245

牛长安  等:基于指针生成网络的代码注释自动生成模型                                                      2163


                [10]    Wong E, Liu T, Tan L. Clocom: Mining existing source code for automatic comment generation. In: Proc. of the 22nd IEEE Int’l
                     Conf. on Software Analysis, Evolution, and Reengineering (SANER). IEEE, 2015. 380–389. [doi: 10.1109/SANER.2015.7081848]
                [11]    Iyer S, Konstas I, Cheung A, Zettlemoyer L. Summarizing source code using a neural attention model. In: Proc. of the 54th Annual
                     Meeting of the  Association for  Computational  Linguistics (Volume  1:  Long Papers). 2016.  2073–2083. [doi:  10.18653/v1/P16-
                     1195]
                [12]    Hu X, Li G, Xia X, Lo D, Jin Z. Deep code comment generation. In: Proc. of the 26th Conf. on Program Comprehension. 2018.
                     200–210. [doi: 10.1145/3196321.3196334]
                [13]    Hu X, Li G, Xia X, Lo D, Lu S, Jin Z. Summarizing source code with transferred API knowledge. In: Proc. of the 27th Int’l Joint
                     Conf. on Artificial Intelligence. 2018. 2269–2275. [doi: 10.5555/3304889.3304975]
                [14]    Wan Y, Zhao Z, Yang M, Xu G, Ying H, Wu J, Yu PS. Improving automatic source code summarization via deep reinforcement
                     learning. In: Proc. of the 33rd ACM/IEEE Int’l Conf. on Automated Software Engineering. 2018. 397–407. [doi: 10.1145/3238147.
                     3238206]
                [15]    Wei B,  Li  G, Xia  X, Fu  Z, Jin  Z.  Code generation  as  a dual task of  code summarization. In:  Advances in  Neural Information
                     Processing Systems. 2019. 6559–6569.
                [16]    Wang  X, Pollock L, Vijay-Shanker K.  Automatically generating natural language descriptions for object-related statement
                     sequences. In: Proc. of the 24th IEEE Int’l  Conf. on  Software Analysis, Evolution  and  Reengineering (SANER). IEEE, 2017.
                     205–216. [doi: 10.1109/SANER.2017.7884622]
                [17]    Allamanis M, Peng H, Sutton C. A convolutional attention network for extreme summarization of source code. In: Proc. of the Int’l
                     Conf. on Machine Learning. 2016. 2091–2100.
                [18]    Sutskever I, Vinyals  O,  Le QV. Sequence to sequence learning  with neural networks. In: Advances in Neural  Information
                     Processing Systems. 2014. 3104–3112. [doi: 10.5555/2969033.2969173]
                [19]    Deissenboeck F, Pizka M. Concise and consistent naming. Software Quality Journal, 2006,14(3):261–282. [doi: 10.1007/s11219-
                     006-9219-1]
                [20]    Luong MT, Pham H, Manning CD. Effective approaches to attention-based neural machine translation. In: Proc. of the 2015 Conf.
                     on Empirical Methods in Natural Language Processing. 2015. 1412–1421.
                [21]    See  A,  Liu PJ,  Manning  CD. Get to the point: Summarization  with pointer-generator networks.  In: Proc. of the 55th  Annual
                     Meeting of the  Association for  Computational  Linguistics (Volume  1:  Long Papers). 2017.  1073–1083. [doi:  10.18653/v1/P17-
                     1099]
                [22]    Movshovitz-Attias D, Cohen W. Natural language models  for  predicting programming comments.  In:  Proc.  of  the  51st  Annual
                     Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2013. 35–40.
                [23]    Koehn P, Hoang H, Birch A, Callison-Burch C, Federico M, Bertoldi N, Cowan B, Shen W, Moran C, Zens R, Dyer C, Bojar O,
                     Constantin A, Herbst E. Moses: Open source toolkit for statistical machine translation. In: Proc. of the 45th Annual Meeting of the
                     ACL on Interactive Poster and Demonstration Sessions. 2007. 177–180. [doi: 10.5555/1557769.1557821]
                [24]    Rush AM, Chopra S, Weston J. A neural attention model for abstractive sentence summarization. In: Proc. of the 2015 Conf. on
                     Empirical Methods in Natural Language Processing. 2015. 379–389. [doi: 10.18653/v1/D15-1044]
                [25]    Eriguchi  A,  Hashimoto K, Tsuruoka Y. Tree-to-sequence  attentional neural  machine  translation. In: Proc. of the 54th  Annual
                     Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2016. 823–833. [doi: 10.18653/v1/P16-1078]
                [26]    Zhou Y, Yan X, Yang W, Chen T, Huang Z. Augmenting Java method comments generation with context information based on
                     neural networks. Journal of Systems and Software, 2019,156:328–340. [doi: 10.1016/j.jss.2019.07.087]
                [27]    Huang Y, Huang S, Chen H, Chen X, Zheng Z, Luo X, Jia N, Hu X, Zhou X. Towards automatically generating block comments for
                     code snippets. Information and Software Technology, 2020, 106373. [doi: 10.1016/j.infsof.2020.106373]
                [28]    Wang W, Zhang Y, Sui Y, Wan Y, Zhao Z, Wu J, Yu P, Xu G. Reinforcement-learning-guided source code summarization via
                     hierarchical attention. IEEE Trans. on Software Engineering, 2020. [doi: 10.1109/TSE.2020.2979701]
                [29]    LeClair A, Jiang S, McMillan C. A neural model for generating natural language summaries of program subroutines. In: Proc. of
                     the 41st IEEE/ACM Int’l Conf. on Software Engineering (ICSE). IEEE, 2019. 795–806. [doi: 10.1109/ICSE.2019.00087]
   240   241   242   243   244   245   246   247   248   249   250