Page 221 - 《软件学报》2021年第7期
P. 221

陈翔  等:代码注释自动生成方法综述                                                              2139


                [58]    Kang HJ, Bissyandé TF, Lo D. Assessing the generalizability of code2vec token embeddings. In: Proc. of the 34th IEEE/ACM Int’l
                     Conf. on Automated Software Engineering. 2019. 1–12.
                [59]    Pennington J, Socher R, Manning CD. Glove: Global vectors for word representation. In: Proc. of the 2014 Conf. on Empirical
                     Methods in Natural Language Processing. 2014. 1532–1543.
                [60]    LeClair A, Jiang S, McMillan C. A neural model for generating natural language summaries of program subroutines. In: Proc. of
                     the 41st IEEE/ACM Int’l Conf. on Software Engineering. 2019. 795–806.
                [61]    Ahmad WU, Chakraborty  S, Ray  B, Chang  KW. A  transformer-based approach  for  source code  summarization. arXiv  Preprint
                     arXiv: 2005.00653, 2020.
                [62]    Loyola P, Marrese-Taylor  E, Matsuo  Y.  A neural  architecture for generating natural language descriptions from source  code
                     changes. arXiv Preprint arXiv: 1704.04856, 2017.
                [63]    Jiang S, McMillan C. Towards automatic generation of short summaries of commits. In: Proc. of the 25th IEEE/ACM Int’l Conf. on
                     Program Comprehension. 2017. 320–323.
                [64]    Xu S, Yao Y, Xu F, Gu T, Tong H, Lu J. Commit message generation for source code changes. In: Proc. of the 27th Int’l Joint Conf.
                     on Artificial Intelligence. 2019. 3975–3981.
                [65]    Jiang S. Boosting neural commit message generation with code semantic analysis. In: Proc. of the 34th IEEE/ACM Int’l Conf. on
                     Automated Software Engineering. 2019. 1280–1282.
                [66]    Liu S, Gao C, Chen S, Nie LY, Liu Y. ATOM: Commit message generation based on abstract syntax tree and hybrid ranking. IEEE
                     Trans. on Software Engineering, 2020.
                [67]    Shido Y, Kobayashi Y, Yamamoto A, Miyamoto A, Matsumura T. Automatic source code summarization with extended tree-LSTM.
                     In: Proc. of the 2019 Int’l Joint Conf. on Neural Networks. 2019. 1–8.
                [68]    LeClair A, Haque S, Wu L, McMillan C. Improved code summarization via a graph neural network. In: Proc. of the Int’l Conf. on
                     Program Comprehension. 2020.
                [69]    Liu S,  Chen  Y,  Xie  X, Siow JK, Liu  Y. Automatic  code summarization  via  multi-dimensional semantic fusing in  GNN.  arXiv
                     Preprint arXiv: 2006.05405, 2020.
                [70]    Wan Y, Zhao Z, Yang M, Xu G, Ying H, Wu J, Yu PS. Improving automatic source code summarization via deep reinforcement
                     learning. In: Proc. of the 33rd ACM/IEEE Int’l Conf. on Automated Software Engineering. 2018. 397407.
                [71]    Wang W, Zhang Y, Sui Y, Wan Y, Zhao Z, WuJ, Xu G. Reinforcement-learning-guided source code summarization via hierarchical
                     attention. IEEE Trans. on Software Engineering, 2020.
                [72]    Chen Q, Zhou M. A neural framework for retrieval and summarization of source code. In: Proc. of the 33rd IEEE/ACM Int’l Conf.
                     on Automated Software Engineering. 2018. 826–831.
                [73]    Ye W, Xie R, Zhang J, Hu T, Wang X, Zhang S. Leveraging code generation to improve code retrieval and summarization via dual
                     learning. In: Proc. of the Web Conf. 2020. 2309–2319.
                [74]    Wang W, Zhang, Y, Zeng Z, Xu G. Trans. A transformer-based framework for unifying code summarization and code search. arXiv
                     Preprint arXiv: 2003.03238, 2020.
                [75]    Wei B,  Li  G, Xia  X, Fu  Z, Jin  Z.  Code generation  as  a dual task of  code summarization. In:  Advances in  Neural Information
                     Processing Systems. 2019. 6563–6573.
                [76]    Hu X, Li G, Xia X, Lo D, Lu S, Jin Z. Summarizing source code with transferred API knowledge. In: Proc. of the 27th Int’l Joint
                     Conf. on Artificial Intelligence. 2018. 2269–2275.
                [77]    Zhang J, Wang X, Zhang H, Sun H, Liu X. Retrieval-based neural source code summarization. In: Proc. of the 42nd Int’l Conf. on
                     Software Engineering. 2020.
                [78]    Liu B, Wang T, Zhang X, Fan Q, Yin G, Deng J. A neural-network based code summarization approach by using source code and
                     its call dependencies. In: Proc. of the 11th Asia-Pacific Symp. on Internetware. 2019. 1–10.
                [79]    Zhou Y, Yan X, Yang W, Chen T, Huang Z. Augmenting Java method comments generation with context information based on
                     neural networks. Journal of Systems and Software, 2019,156:328–340.
   216   217   218   219   220   221   222   223   224   225   226