Page 220 - 《软件学报》2021年第7期
P. 220
2138 Journal of Software 软件学报 Vol.32, No.7, July 2021
[36] McBurney PW, Liu C, McMillan C, Weninger T. Improving topic model source code summarization. In: Proc. of the 22nd Int’l
Conf. on Program Comprehension. 2014. 291–294.
[37] Rodeghero P, Liu C, McBurney PW, McMillan C. An eye-tracking study of Java programmers and application to source code
summarization. IEEE Trans. on Software Engineering, 2015,41(11):1038–1054.
[38] Fowkes J, Chanthirasegaran P, Ranca R, Allamanis M, Lapata M, Sutton C. Autofolding for source code summarization. IEEE
Trans. on Software Engineering, 2017,43(12):1095–1109.
[39] Panichella S, Aponte J, Di Penta M, Marcus A, Canfora G. Mining source code descriptions from developer communications. In:
Proc. of the 20th IEEE Int’l Conf. on Program Comprehension. 2012. 63–72.
[40] Rahman MM, Roy CK, Keivanloo I. Recommending insightful comments for source code using crowdsourced knowledge. In: Proc.
of the 15th IEEE Int’l Working Conf. on Source Code Analysis and Manipulation. 2015. 81–90.
[41] Wong E, Yang J, Tan L. Autocomment: Mining question and answer sites for automatic comment generation. In: Proc. of the 28th
IEEE/ACM Int’l Conf. on Automated Software Engineering. 2013. 562–567.
[42] Vassallo C, Panichella S, Di Penta M, Canfora G. Codes: Mining source code descriptions from developers discussions. In: Proc. of
the 22nd Int’l Conf. on Program Comprehension. 2014. 106–109.
[43] Wong E, Liu T, Tan L. Clocom: Mining existing source code for automatic comment generation. In: Proc. of the 22nd IEEE Int’l
Conf. on Software Analysis, Evolution, and Reengineering. 2015. 380–389.
[44] Badihi S, Heydarnoori A. Crowdsummarizer: Automated generation of code summaries for Java programs through crowdsourcing.
IEEE Software, 2017,34(2):71–80.
[45] Huang Y, Zheng Q, Chen X, Xiong Y, Liu Z, Luo X. Mining version control system for automatically generating commit comment.
In: Proc. of the 2017 ACM/IEEE Int’l Symp. on Empirical Software Engineering and Measurement. 2017. 414–423.
[46] Jiang S, Armaly A, McMillan C. Automatically generating commit messages from diffs using neural machine translation. In: Proc.
of the 32nd IEEE/ACM Int’l Conf. on Automated Software Engineering. 2017. 135–146.
[47] Alon U, Zilberstein M, Levy O, Yahav E. code2vec: Learning distributed representations of code. In: Proc. of the ACM on
Programming Languages. 2019. 1–29.
[48] Alon U, Brody S, Levy O, Yahav E. code2seq: Generating sequences from structured representations of code. arXiv Preprint arXiv:
1808.01400, 2019.
[49] Lozoya RC, Baumann A, Sabetta A, Bezzi M. Commit2Vec: Learning distributed representations of code changes. arXiv Preprint
arXiv: 1911.07605, 2019.
[50] Hoang T, Kang HJ, Lawall J, Lo D. CC2Vec: Distributed representations of code changes. arXiv Preprint arXiv: 2003.05620, 2020.
[51] Allamanis M, Barr ET, Devanbu P, Sutton C. A survey of machine learning for big code and naturalness. ACM Computing Surveys,
2018,51(4):1–37.
[52] Hindle A, Barr ET, Su Z, Gabel M, Devanbu P. On the naturalness of software. In: Proc. of the 34th Int’l Conf. on Software
Engineering. 2012. 837–847.
[53] Li YC, Xiong DY, Zhang M. A survey of neural machine translation. Chinese Journal of Computers. 2018, 41(12):27342755 (in
Chinese with English abstract).
[54] Allamanis M, Peng H, Sutton C. A convolutional attention network for extreme summarization of source code. In: Proc. of the Int’l
Conf. on Machine Learning. 2016. 2091–2100.
[55] Zheng W, Zhou HY, Li M, Wu J. Code attention: Translating code to comments by exploiting domain features. arXiv Preprint
arXiv: 1709.07642, 2017.
[56] Liang Y, Zhu K. Q. Automatic generation of text descriptive comments for code blocks. In: Proc. of the 32nd AAAI Conf. on
Artificial Intelligence. 2018.
[57] Hu X, Li G, Xia X, Lo D, Jin Z. Deep code comment generation with hybrid lexical and syntactical information. Empirical
Software Engineering, 2020,25(3):2179–2217.