Page 220 - 《软件学报》2021年第7期
P. 220

2138                                     Journal of Software  软件学报 Vol.32, No.7,  July 2021

                [36]    McBurney PW, Liu C, McMillan C, Weninger T. Improving topic model source code summarization. In: Proc. of the 22nd Int’l
                     Conf. on Program Comprehension. 2014. 291–294.
                [37]    Rodeghero P,  Liu  C,  McBurney PW, McMillan  C. An  eye-tracking study of  Java programmers  and  application to source  code
                     summarization. IEEE Trans. on Software Engineering, 2015,41(11):1038–1054.
                [38]    Fowkes  J, Chanthirasegaran  P, Ranca R,  Allamanis M, Lapata M,  Sutton C.  Autofolding  for  source code summarization.  IEEE
                     Trans. on Software Engineering, 2017,43(12):1095–1109.
                [39]    Panichella S, Aponte J, Di Penta M, Marcus A, Canfora G. Mining source code descriptions from developer communications. In:
                     Proc. of the 20th IEEE Int’l Conf. on Program Comprehension. 2012. 63–72.
                [40]    Rahman MM, Roy CK, Keivanloo I. Recommending insightful comments for source code using crowdsourced knowledge. In: Proc.
                     of the 15th IEEE Int’l Working Conf. on Source Code Analysis and Manipulation. 2015. 81–90.
                [41]    Wong E, Yang J, Tan L. Autocomment: Mining question and answer sites for automatic comment generation. In: Proc. of the 28th
                     IEEE/ACM Int’l Conf. on Automated Software Engineering. 2013. 562–567.
                [42]    Vassallo C, Panichella S, Di Penta M, Canfora G. Codes: Mining source code descriptions from developers discussions. In: Proc. of
                     the 22nd Int’l Conf. on Program Comprehension. 2014. 106–109.
                [43]    Wong E, Liu T, Tan L. Clocom: Mining existing source code for automatic comment generation. In: Proc. of the 22nd IEEE Int’l
                     Conf. on Software Analysis, Evolution, and Reengineering. 2015. 380–389.
                [44]    Badihi S, Heydarnoori A. Crowdsummarizer: Automated generation of code summaries for Java programs through crowdsourcing.
                     IEEE Software, 2017,34(2):71–80.
                [45]    Huang Y, Zheng Q, Chen X, Xiong Y, Liu Z, Luo X. Mining version control system for automatically generating commit comment.
                     In: Proc. of the 2017 ACM/IEEE Int’l Symp. on Empirical Software Engineering and Measurement. 2017. 414–423.
                [46]    Jiang S, Armaly A, McMillan C. Automatically generating commit messages from diffs using neural machine translation. In: Proc.
                     of the 32nd IEEE/ACM Int’l Conf. on Automated Software Engineering. 2017. 135–146.
                [47]    Alon U,  Zilberstein M,  Levy  O,  Yahav E.  code2vec:  Learning distributed representations of  code. In: Proc. of the  ACM on
                     Programming Languages. 2019. 1–29.
                [48]    Alon U, Brody S, Levy O, Yahav E. code2seq: Generating sequences from structured representations of code. arXiv Preprint arXiv:
                     1808.01400, 2019.
                [49]    Lozoya RC, Baumann A, Sabetta A, Bezzi M. Commit2Vec: Learning distributed representations of code changes. arXiv Preprint
                     arXiv: 1911.07605, 2019.
                [50]    Hoang T, Kang HJ, Lawall J, Lo D. CC2Vec: Distributed representations of code changes. arXiv Preprint arXiv: 2003.05620, 2020.
                [51]    Allamanis M, Barr ET, Devanbu P, Sutton C. A survey of machine learning for big code and naturalness. ACM Computing Surveys,
                     2018,51(4):1–37.
                [52]    Hindle A,  Barr  ET, Su  Z,  Gabel M,  Devanbu P.  On the naturalness of  software.  In: Proc. of the 34th Int’l  Conf. on Software
                     Engineering. 2012. 837–847.
                [53]    Li YC, Xiong DY, Zhang M. A survey of neural machine translation. Chinese Journal of Computers. 2018, 41(12):27342755 (in
                     Chinese with English abstract).
                [54]    Allamanis M, Peng H, Sutton C. A convolutional attention network for extreme summarization of source code. In: Proc. of the Int’l
                     Conf. on Machine Learning. 2016. 2091–2100.
                [55]    Zheng W, Zhou HY, Li M, Wu J. Code attention: Translating code to comments by exploiting domain features. arXiv Preprint
                     arXiv: 1709.07642, 2017.
                [56]    Liang  Y,  Zhu  K.  Q.  Automatic generation of  text descriptive  comments for code blocks. In: Proc. of the 32nd AAAI  Conf. on
                     Artificial Intelligence. 2018.
                [57]    Hu X, Li G, Xia  X, Lo  D,  Jin Z.  Deep code comment  generation with  hybrid  lexical and  syntactical information. Empirical
                     Software Engineering, 2020,25(3):2179–2217.
   215   216   217   218   219   220   221   222   223   224   225