Page 138 - 《软件学报》2021年第7期
P. 138

软件学报 ISSN 1000-9825, CODEN RUXUEW                                       E-mail: jos@iscas.ac.cn
                 Journal of Software,2021,32(7):2056–2077 [doi: 10.13328/j.cnki.jos.006266]   http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                         Tel: +86-10-62562563


                                                         
                 自动驾驶智能系统测试研究综述

                                               1
                                                                      1
                                       1
                                                      1
                      1,2
                               1
                                                                              1
                                                              1
                                                                                      1
                 朱向雷 ,   王海弛 ,   尤翰墨 ,   张蔚珩 ,   张颖异 ,   刘   爽 ,   陈俊洁 ,   王   赞 ,   李克秋
                 1 (天津大学  智能与计算学部,天津   300350)
                 2 (中国汽车技术研究中心有限公司,天津  300300)
                 通讯作者:  陈俊洁, E-mail: junjiechen@tju.edu.cn

                 摘   要:  随着人工智能技术的深入发展,自动驾驶已成为人工智能技术的典型应用,近十年来得到了长足的发展,
                 作为一类非确定性系统,自动驾驶车辆的质量和安全性得到越来越多的关注.对自动驾驶系统,特别是自动驾驶智能
                 系统(如感知模块、决策模块、综合功能及整车)的测试技术得到了业界和学界的深入研究.调研了 56 篇相关领域
                 的学术论文,分别就感知模块、决策模块、综合功能模块及整车系统的测试技术、用例生成方法和测试覆盖度量
                 等维度对目前已有的研究成果进行了梳理,并描述了自动驾驶智能系统测试中的数据集及工具集.最后,对自动驾驶
                 智能系统测试的未来工作进行了展望,从而为该领域的研究人员提供参考.
                 关键词:  自动驾驶智能系统;测试用例生成;测试覆盖标准
                 中图法分类号: TP311

                 中文引用格式:  朱向雷,王海弛,尤翰墨,张蔚珩,张颖异,刘爽,陈俊洁,王赞,李克秋.自动驾驶智能系统测试研究综述.软件学
                 报,2021,32(7):2056–2077. http://www.jos.org.cn/1000-9825/6266.htm
                 英文引用格式:  Zhu  XL, Wang HC, You HM, Zhang WH, Zhang YY, Liu S,  Chen JJ, Wang Z, Li KQ. Survey on  testing  of
                 intelligent systems in autonomous vehicles. Ruan Jian Xue Bao/Journal of Software, 2021,32(7):2056–2077 (in Chinese). http://www.
                 jos.org.cn/1000-9825/6266.htm

                 Survey on Testing of Intelligent Systems in Autonomous Vehicles
                             1,2
                                                          1
                                            1
                                                                                           1
                                                                           1
                                                                                                       1
                 ZHU Xiang-Lei ,   WANG Hai-Chi ,   YOU Han-Mo ,   ZHANG Wei-Heng ,   ZHANG Ying-Yi ,   LIU Shuang ,
                                       1
                           1
                 CHEN Jun-Jie ,   WANG Zan ,   LI Ke-Qiu
                 1 (College of Intelligence and Computing, Tianjin University, Tianjin 300350, China)
                 2 (China Automotive Technology and Research Center Co. Ltd., Tianjin 300300, China)
                 Abstract:    With the development of artificial intelligence, autonomous vehicles have become a typical application in the field of artificial
                 intelligence. In recent 10 years, autonomous vehicles have already made considerable processes. As an uncertain system, their quality and
                 safety have attracted much attention. Autonomous vehicletesting, especially testing the intellectual systems in autonomous vehicles (such
                 as perception module, decision module, synthetical functional module, and the whole vehicle) gain extensive attention from both industry
                 and academia. This survey offers a systematical review on 56 papers related to autonomous vehicle testing. Besides, this survey analyzes
                 the testing techniques with respect to perception model, decision model, synthetical functional module, and the whole vehicle, including
                 test case generation approaches, testing coverage metrics, as well as datasets and tools widely used in autonomous vehicle testing. Finally,
                 this survey highlights future perspectiveson autonomous vehicle testing and provides reference for researchers in this field.
                 Key words:    intelligent systems in autonomous vehicles; test case generation; test coverage metric

                     基金项目:  国家自然科学基金(61872263, 61802275, 62002256,  U1836214);  天津市智能制造专项资金(20193155);  天津大学
                 自主科研基金(2020XZC-0042)
                     Foundation item:  National Natural  Science Foundation of  China (61872263, 61802275, 62002256,  U1836214); Intelligent
                 Manufacturing Special Fund of Tianjin (20193155); Innovation Research Project of Tianjin University (2020XZC-0042)
                     本文由“面向非确定性的软件质量保障方法与技术”专题特约编辑陈俊洁副教授、汤恩义副教授、何啸副教授以及马晓星教
                 授推荐.
                     收稿时间: 2020-09-15;  修改时间: 2020-10-26;  采用时间: 2020-12-14; jos 在线出版时间: 2021-01-22
   133   134   135   136   137   138   139   140   141   142   143