Page 119 - 《软件学报》2021年第7期
P. 119

石剑君  等:操作系统内核并发错误检测研究进展                                                         2037


                [69]    Andrianov P, Mutilin V, Khoroshilov A. Predicate abstraction based configurable method for data race detection in Linux kernel. In:
                     Proc. of the Int’l Conf. on Tools and Methods for Program Analysis. Cham: Springer-Verlag, 2017. 11–23.
                [70]    Pozniansky  E, Schuster  A.  Efficient  on-the-fly data race detection in  multithreaded  C++ programs. In: Proc.  of the  9th  ACM
                     SIGPLAN Symp. on Principles and Practice of Parallel Programming (PPoPP). 2003. 179–190. [doi: 10.1145/781498.781529]
                [71]    Rajagopalan AK, Huang J. RDIT: Race detection from incomplete traces. In: Proc. of the 10th Joint European Software Engineering
                     Conf. and Symp. on the Foundations of Software Engineering (ESEC/FSE). Bergamo: ACM Press, 2015. 914–917. [doi: 10.1145/
                     2786805.2803209]
                [72]    Seyster  J, Radhakrishnan  P, Katoch  S,  Duggal A,  Stoller  SD, Zadok E. Redflag: A framework for analysis  of  kernel-level
                     concurrency. In: Proc. of the Int’l  Conf. on  Algorithms  and  Architectures for Parallel Processing.  Berlin,  Heidelberg: Springer-
                     Verlag, 2011. 66–79.
                [73]    What is RCU? 2020. https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt
                [74]    Chen QL, Bai JJ, Jiang ZM, Lawall J, Hu SM. Detecting data races caused by inconsistent lock protection in device drivers. In: Proc.
                     of the 26th IEEE Int’l Conf. on Software Analysis, Evolution and Reengineering (SANER). Hangzhou: IEEE, 2019. 366–376. [doi:
                     10.1109/SANER.2019.8668017]
                [75]    The LLVM compiler infrastructure project. 2020. https://llvm.org/
                [76]    Kernel-strider. 2020. https://github.com/euspectre/kernel-strider
                [77]    Erickson J, Musuvathi M, Burckhardt S, Olynyk K. Effective data-race detection for the kernel. In: Proc. of the 9th USENIX Symp.
                     on Operating Systems Design and Implementation (OSDI). 2010.
                [78]    Jiang Y, Yang Y, Xiao T, Sheng T, Chen W. DRDDR: A lightweight method to detect data races in Linux kernel. The Journal of
                     Supercomputing, 2016,72(4):1645–1659.
                [79]    Blum B. Landslide: Systematic dynamic race detection in kernel space. 2012. https://www.pdl.cmu.edu/PDL-FTP/associated/CMU-
                     CS-12-118.pdf
                [80]    Magnusson PS, Christensson M, Eskilson J, Forsgren D, Hallberg G, Hogberg J, Larsson F, Moestedt A, Werner B. Simics: A full
                     system simulation platform. Computer, 2002,35(2):50–58. [doi: 10.1109/2.982916]
                [81]    Fonseca P, Rodrigues R, Brandenburg BB. SKI: Exposing kernel concurrency bugs through systematic schedule exploration. In:
                     Proc. of the 11th USENIX Symp. on Operating Systems Design and Implementation (OSDI). 2014. 415–431.
                [82]    QEMU. 2020. https://www.qemu.org/
                [83]    Zhou C, Wang M, Liang J, Jiang Y. Zeror: Speed up fuzzing with coverage-sensitive tracing and scheduling. In: Proc. of the Conf.
                     of Automated Software Engineering (ASE). 2020.
                [84]    Chen H, Guo S, Xue Y, Sui Y, Zhang C, Li Y, Wang H, Liu Y. MUZZ: Thread-aware grey-box fuzzing for effective bug hunting in
                     multithreaded programs. In: Proc. of the 29th USENIX Security Symp. (USENIX Security). 2020. 2325–2342.
                [85]    Vinesh N, Sethumadhavan M. ConFuzz—A concurrency fuzzer. In: Proc. of the 1st Int’l Conf. on Sustainable Technologies for
                     Computational Intelligence. Singapore: Springer-Verlag, 2020. 667–691.
                [86]    Xu M, Kashyap S, Zhao H, Kim T. Krace: Data race fuzzing for kernel file systems. In: Proc. of the 2020 IEEE Symp. on Security
                     and Privacy (SP). San Francisco: IEEE, 2020. 1643–1660.
                [87]    Gu R,  Shao Z, Chen H,  Wu X,  Kim J,  Sjöberg V, Costanzo  D. CertiKOS: An extensible architecture  for  building certified
                     concurrent OS kernels.  In: Proc. of  the  USENIX Symp. on  Operating Systems Design  and Implementation. Savannah, 2016.
                     653–669.
                [88]    Lu S, Tucek J, Qin F, Zhou Y. AVIO: Detecting atomicity violations via access interleaving invariants. ACM SIGOPS Operating
                     Systems Review, 2006,40(5):37–48. [doi: 10.1145/1168917.1168864]
                [89]    Lochmann A, Schirmeier H, Borghorst H, Spinczyk O. LockDoc: Trace-based analysis of locking in the Linux kernel. In: Proc. of
                     the 14th EuroSys Conf. 2019 (EuroSys). Dresden: ACM Press, 2019. 1–15. [doi: 10.1145/3302424.3303948]
                 附中文参考文献:
                [20]    苏小红,禹振,王甜甜,马培军.并发缺陷暴露、检测与规避研究综述.计算机学报,2015,395(11):2215–2233. [doi:  10.11897/SP.J.
                     1016.2015.02215]
   114   115   116   117   118   119   120   121   122   123   124