Page 271 - 《软件学报》2020年第11期
P. 271

3586                                Journal of Software  软件学报 Vol.31, No.11, November 2020














                         Fig.14  Watermark detection accuracy after   Fig.15    Data recovery accuracy after
                                 tuples alteration attacks             tuples alteration attacks
                         图 14   水印检测的准确率(元组修改攻击)               图 15   数据恢复的准确率(元组修改攻击)

                 5    结束语

                    传统的关系数据数字水印方案会永久性地损害数据的可用性,使得可用性难以满足使用者的要求.现有的
                 关系数据可逆水印方案可将数据中的水印全部去除,实现数据恢复.但是数据恢复后,其版权将无法得到保护.
                 本文针对上述问题,提出了一种分级可逆的关系数据水印方案,定义了数据质量等级来反映数据的可用性,设计
                 了可实现分级可逆水印的分区嵌入、等级检测、水印检测以及等级提升等算法,可以对任何数据质量等级的数
                 据进行等级提升.同时,对于任意数据质量等级的关系数据,均可通过其中的水印证明数据的版权.实验分析表
                 明,方案中算法具有较高的执行效率,可满足绝大多数应用场景的要求.水印具有良好的抗攻击能力,足以应对
                 各类攻击.


                 References:
                 [1]    Naimi  AI, Westreich DJ. Big  data: A  revolution  that will transform  how  we  live, work, and  think.  Mathematics & Computer
                     Education, 2014,47(17):181−183.
                 [2]    Katzenbeisser S, Petitcolas FA. Information Hiding Techniques for Steganography and Digital Watermarking. Artech House, Inc.,
                     2000.
                 [3]    Alattar  AM.  Reversible  watermark  using the difference  expansion of  a generalized integer transform. IEEE  Trans. on Image
                     Processing, 2004,13(8):1147−1156.
                 [4]    An L, Gao X, Li X, Tao D, Deng C, Li J. Robust reversible watermarking via clustering and enhanced pixel-wise masking. IEEE
                     Trans. on Image Processing, 2012,21(8):3598−3611.
                 [5]    Cox IJ, Kilian J, Leighton T, Shamoon T. Secure spread spectrum watermarking for multimedia. IEEE Trans. on Image Processing,
                     1997,6(12):1673−1687.
                 [6]    Hartung F, Kutter M. Multimedia watermarking techniques. Proc. of the IEEE, 1999,87(7):1079−1107.
                 [7]    Agrawal R, Kiernan J. Watermarking relational databases. In: Proc. of the Int’l Conf. on Very Large Databases. 2002. 155−166.
                 [8]    Sion R, Atallah M, Prabhakar S. Rights protection for categorical data. IEEE Trans. on Knowledge and Data Engineering, 2005,
                     17(7):912−926.
                 [9]    Hou RT, Xian HQ, Liu HY, Gao Y, Zhang Y. Multi-verifiable Reversible Watermarking Scheme for Relational Data. Journal of
                     Cryptologic Research, 2019,6(1):37−49 (in Chinese with English abstract).
                [10]    Niu XM, Zhao L, Huang WJ, Zhang H. Watermarking relational databases for ownership protection. Acta Electronica Sinica, 2004,
                     31(12A):2050−2053 (in Chinese with English abstract).
                [11]    Zhang ZH, Jin  XM,  Wang JM, Li  DY. Watermarking relational database using image. In: Proc. of the Int’l  Conf. on  Machine
                     Learning and Cybernetics, Vol.3. IEEE, 2004. 1739−1744.
                [12]    Xiang  Y,  Li JY,  Pan JF.  Database  watermarking  algorithm based on virtual primary key. Journal of Computer  Research  and
                     Development, 2009,46(Suppl.):66−70 (in Chinese with English abstract).
                [13]    Zhou  G,  Wu  KM. Research on  zero-watermarking  model of relational databases based on  improved C4.5  algorithm. Computer
                     Applications and Software, 2015,32(1):64−67 (in Chinese with English abstract).
                [14]    Melkundi S, Chandankhede C. A robust technique for relational database watermarking and verification. In: Proc. of the Int’l Conf.
                     on Communication, Information & Computing Technology. IEEE, 2015. 1−7.
   266   267   268   269   270   271   272   273   274   275   276