Page 254 - 《软件学报》2020年第11期
P. 254

于冲  等:基于二跳共同邻居的无人机群体网络演化算法                                                      3569


                        网络不可靠问题.
                    (3)  使用数学分析方法与仿真实验对算法有效性进行验证.结果表明,使用本文所提出的 LPTCN 网络演
                        化算法所构建的通信网络具有良好的生存性与抗毁性.
                    无人机集群的通信架构与通信协议正在逐步完善,形成可靠的通信网络结构只是保证无人机集群通信有
                 效性的第一步.无人机的移动性、彼此之间的信号干扰以及无线信道中的信号衰减,都对无人机集群的通信提
                 出了挑战.在接下来的在工作中,我们将针对上述问题展开研究.

                 References:
                 [1]    Andre T, Hummel KA, Schoellig AP, et al. Application-driven design of aerial communication networks. IEEE Communications
                     Magazine, 2014,52(5):129−137. https://doi.org/10.1109/MCOM.2014.6815903
                 [2]    Gupta  L, Jain  R,  Vaszkun  G. Survey of important issues in  UAV  communication networks. IEEE  Communications Surveys  &
                     Tutorials, 2016,18(2):1123−1152. https://doi.org/10.1109/COMST.2015.2495297
                 [3]    Hayat S, Yanmaz E, Muzaffar R. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint.
                     IEEE Communications Surveys & Tutorials, 2016,18(4):2624−2661. https://doi.org/10.1109/COMST.2016.2560343
                 [4]    Reynolds  CW. Flocks, herds  and schools:  A distributed behavioral  model. ACM SIGGRAPH  Computer  Graphics, 1987,21(4):
                     25−34. https://doi.org/10.1145/37401.37406
                 [5]    Bekmezci  I, Sahingoz OK,  Temel  Ş. Flying  ad-hoc networks (FANETs):  A survey.  Ad  Hoc Networks, 2013,11(3):1254−1270.
                     https://doi.org/10.1016/j.adhoc.2012.12.004
                 [6]    Lu J, Chen G, Yu X. Modelling, analysis and control of multi-agent systems: A brief overview. In: Proc. of the IEEE Int’l Symp. on
                     Circuits and Systems. IEEE, 2011. 2103−2106. https://doi.org/10.1109/ISCAS.2011.5938013
                 [7]    Cao Y, Yu W, Ren W, et al. An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. on
                     Industrial informatics, 2013,9(1):427−438. https://doi.org/10.1109/TII.2012.2219061
                 [8]    Olfati-Saber R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. on Automatic Control, 2006,51(3):
                     401−420. https://doi.org/10.1109/TAC.2005.864190
                 [9]    Li K, Ni W, Wang X, et al. Energy-efficient cooperative relaying for unmanned aerial vehicles. IEEE Trans. on Mobile Computing,
                     2016,15(6):1377−1386. https://doi.org/10.1109/TMC.2015.2467381
                [10]    Fadlullah ZM, Takaishi D, Nishiyama H,  et  al. A dynamic trajectory  control algorithm  for  improving  the communication
                     throughput and delay in UAV-aided networks. IEEE Network, 2016,30(1):100−105. https://doi.org/10.1109/MNET.2016.7389838
                [11]    Mozaffari M, Saad W, Bennis M, et al. Unmanned aerial vehicle with underlaid device-to-device communications: Performance
                     and tradeoffs. IEEE Trans. on Wireless Communications, 2016,15(6):3949−3963. https://doi.org/10.1109/TWC.2016.2531652
                [12]    Yazıcıoğlu AY, Egerstedt M, Shamma JS. Formation of robust multi-agent networks through self-organizing random regular graphs.
                     IEEE Trans. on Network Science and Engineering, 2015,2(4):139−151. https://doi.org/10.1109/TNSE.2015.2503983
                [13]    Yuan X, Feng ZY, Xu  WJ,  et  al. Secure  connectivity  analysis in unmanned  aerial vehicle networks. Frontiers of Information
                     Technology & Electronic Engineering, 2018,19(3):409−422. https://doi.org/10.1631/FITEE.1700032
                [14]    Lü L, Zhou T. Link prediction in complex networks: A survey. Physica A: Statistical Mechanics and Its Applications, 2011,390(6):
                     1150−1170. https://doi.org/10.1016/j.physa.2010.11.027
                [15]    Newman MEJ, Strogatz SH, Watts DJ. Random graphs with arbitrary degree distributions and their applications. Physical Review E,
                     2001,64(2):026118. https://doi.org/10.1103/PhysRevE.64.026118
                [16]    Wu J, Chi KT, Lau FCM, et al. Analysis of communication network performance from a complex network perspective. IEEE Trans.
                     on Circuits and Systems I: Regular Papers, 2013,60(12):3303−3316. https://doi.org/10.1109/TCSI.2013.2264697
                [17]    Cohen R, Erez K, Ben-Avraham D, et al. Resilience of the internet to random breakdowns. Physical Review Letters, 2000,85(21):
                     4626−4628. https://doi.org/10.1103/PhysRevLett.85.4626
                [18]    Wang B, Tang H, Guo C, et al. Entropy optimization of scale-free networks’ robustness to random failures. Physica A: Statistical
                     Mechanics and Its Applications, 2006,363(2):591−596. https://doi.org/10.1016/j.physa.2005.08.025
                [19]    Lü L, Jin CH, Zhou T. Similarity index based on local paths for link prediction of complex networks. Physical Review E, 2009,
                     80(4):046122. https://doi.org/10.1103/PhysRevE.80.046122
   249   250   251   252   253   254   255   256   257   258   259