Page 165 - 《软件学报》2020年第11期
P. 165

软件学报 ISSN 1000-9825, CODEN RUXUEW                                       E-mail: jos@iscas.ac.cn
                 Journal of Software,2020,31(11):3481−3491 [doi: 10.13328/j.cnki.jos.005818]   http://www.jos.org.cn
                 ©中国科学院软件研究所版权所有.                                                         Tel: +86-10-62562563


                                                                       ∗
                 一种基于模糊相似关系的局部社区发现方法

                      1,2
                                       1
                               1
                 刘井莲 ,   王大玲 ,   冯   时 ,   张一飞  1
                 1
                 (东北大学  计算机科学与工程学院,辽宁  沈阳  110169)
                 2
                 (绥化学院  信息工程学院,黑龙江  绥化  152061)
                 通讯作者:  王大玲, E-mail: wangdaling@cse.neu.edu.cn

                 摘   要:  近几年,在线社交媒体发展飞速,出现了大规模社会网络.传统的基于网络全局结构的社区发现方法难以
                 有效地处理这些大网络.局部社区发现作为一种无需知道网络的全局结构、仅通过分析给定节点的周围节点之间的
                 关系即可找出给定节点所在社区的方法,在社会网络大数据分析中具有重要的应用意义.针对真实世界网络结构中
                 个体间的相似关系是模糊的或不确定性的,提出了一种基于模糊相似关系的局部社区发现方法.首先,采用模糊关系
                 来描述两个节点之间的相似关系,以节点对的相似度作为该模糊关系的隶属函数;然后证明了该关系是一种模糊相
                 似关系,将局部社区定义为给定节点关于模糊相似关系的等价类,进而采用最大连通子图算法求得给定节点所在的
                 社区.分别在仿真网络和真实网络上进行了实验,实验结果表明,该算法能够有效地揭示出给定节点所在的局部社
                 区,相比其他算法,具有更高的 F-score.
                 关键词:  社会媒体网络;局部社区发现;模糊相似关系;社区结构
                 中图法分类号: TP18

                 中文引用格式:  刘井莲,王大玲,冯时,张一飞.一种基于模糊相似关系的局部社区发现方法.软件学报,2020,31(11):3481−3491.
                 http://www.jos.org.cn/1000-9825/5818.htm
                 英文引用格式: Liu JL, Wang DL, Feng S, Zhang YF. Local community discovery approach based on fuzzy similarity relation.
                 Ruan Jian Xue Bao/Journal of Software, 2020,31(11):3481−3491 (in Chinese). http://www.jos.org.cn/1000-9825/5818.htm

                 Local Community Discovery Approach Based on Fuzzy Similarity Relation
                           1,2
                                                      1
                                            1
                 LIU Jing-Lian ,   WANG Da-Ling ,  FENG Shi ,  ZHANG Yi-Fei 1
                 1 (School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China)
                 2 (School of Information Engineering, Suihua University, Suihua 152061, China)
                 Abstract:    Online  social media  has developed  rapidly in  recent years, and many massive  social  networks  have emerged. Traditional
                 community detection methods are difficult to deal with these massive networks effectively for requiring knowledge of the entire network.
                 Local community detection can find out the community of a given node through the connection relationship between the nodes around the
                 given node  without knowledge of the  entire network structure,  so it  is of great significance in  social  media  mining. For  the relations
                 between pairs of nodes in real-world networks are fuzzy or uncertain, the similarity relationship between two nodes with fuzzy relation is
                 firstly described, and similarity between nodes as membership function of the fuzzy relation is defined. Then, it is proved that the fuzzy
                 relation is a fuzzy similarity relation, and local community is defined as the equivalence class of the given node about fuzzy similarity
                 relation. Moreover, local community of the given node is discovered by adopting maximal connected subgraph approach. The proposed


                   ∗  基金项目:  国家重点研发计划(2018YFB1004700);  国家自然科学基金(61772122, 61872074, 61602103, U1435216);  黑龙江省
                 属高校基本科研业务费项目(KYYWF10236180104)
                     Foundation item: National Key Research and Development  Program of China  (2018YFB1004700); National Natural  Science
                 Foundation of  China (61772122, 61872074, 61602103,  U1435216); Fundamental  Research Funds for the  Provincial  University of
                 Heilongjiang Province (KYYWF10236180104)
                     收稿时间: 2018-05-23;  修改时间: 2018-10-17;  采用时间: 2019-01-07
   160   161   162   163   164   165   166   167   168   169   170