Page 163 - 《软件学报》2020年第11期
P. 163

丁丹  等:场景驱动且自底向上的单体系统微服务拆分方法                                                     3479


                 [3]    Meshenberg R.  Microservices  at netflix scale: First principles,  tradeoffs, lessons learned. 2016. https://gotocon.com/dl/goto-
                     amsterdam-2016/slides/RuslanMeshenberg_MicroservicesAtNetflixScaleFirstPrinciplesTradeoffsLessonsLearned.pdf
                 [4]    Zhou X, Peng X, Xie T, et al. Fault analysis and debugging of microservice systems: Industrial survey, benchmark system, and
                     empirical study. IEEE Trans. on Software Engineering (Early Access), 2018. [doi: 10.1109/TSE.2018.2887384]
                 [5]    Zhou X, Peng X, Xie T, et al. Latent error prediction and fault localization for microservice applications by learning from system
                     trace logs. In: Proc. of the ESEC/SIGSOFT FSE. 2019. 683−694.
                 [6]    Evans E. Domain-Driven Design: Tackling Complexity in the Heart of Software. Upper Saddle River: Pearson Education, 2003.
                 [7]    Rademacher F, Sachweh S, Zündorf A. Towards a UML profile for domain-driven design of microservice architectures. In: Proc. of
                     the Int’l Conf. on Software Engineering & Formal Methods. Springer-Verlag, 2017. 230−245.
                 [8]    Kieker. 2019. http://kieker-monitoring.net/
                 [9]    Hoorn AV, Waller J, Hasselbring W. Kieker: A framework for application performance monitoring and dynamic software analysis.
                     In: Proc. of the Int’l Conf. on Performance Engineering (ICPE). 2012. 247−248.
                [10]    Parnas DL. On  the criteria  to  be used  in decomposing  systems into modules. Communications  of  the ACM,  1972,15(12):
                     1053−1058.
                [11]    Fowler M. Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.
                [12]    Chatterjee M, Das SK, Turgut D. WCA: A weighted clustering algorithm for mobile ad hoc networks. Cluster Computing, 2002,
                     5(2):193−204.
                [13]    Andritsos P, Tzerpos V. Information-theoretic software clustering. IEEE Trans. on Software Engineering, 2005,31(2):150−165.
                [14]    Lin Y, Peng X, Cai YF, et al. Interactive and guided architectural refactoring with search-based recommendation. In: Proc. of the
                     ACM SIGSOFT Int’l Symp. on Foundations of Software Engineering. 2016. 535−546.
                [15]    Jamshidi P, Pahl  C, Mendonça NC, et al.  Microservices: The journey so far  and  challenges ahead. IEEE Software, 2018,35(3):
                     24−35.
                [16]    Pahl C, Jamshidi P. Microservices: A systematic mapping study. In: Proc. of the Int’l Conf. on Cloud Computing and Services
                     Science. 2016. 137−146.
                [17]    Francesco PD, Lago P, Malavolta I. Migrating towards microservice architectures: An industrial survey. In: Proc. of the IEEE Int’l
                     Conf. on Software Architecture (ICSA). IEEE, 2018. 29−39.
                [18]    Taibi D, Lenarduzzi V,  Pahl C.  Processes, motivations,  and  issues  for migrating  to microservices architectures: An empirical
                     investigation. IEEE Cloud Computing, 2017,4(5):22−32.
                [19]    Fritzsch J, Bogner J, Zimmermann A, Wagner S. From monolith to microservices: A classification of refactoring approaches. In:
                     Proc. of the Int’l  Workshop on Software  Engineering  Aspects of  Continuous Development  and  New Paradigms of Software
                     Production and Deployment. Springer-Verlag, 2018.
                [20]    Rademacher F, Sorgalla  J, Sachweh S. Challenges of domain-driven  microservice design:  A  model-driven  perspective. IEEE
                     Software, 2018,35(3):36−43.
                [21]    AjiL. 2019. https://github.com/SeelabFhdo/AjiL
                [22]    Levcovitz A, Terra  R,  Valente MT.  Towards a technique  for extracting microservices  from monolithic enterprise  systems.
                     arXiv:1605.03175, 2016.
                [23]    Chen R, Li SS, Li Z. From monolith to microservices: A dataflow-driven approach. In: Proc. of the IEEE Asia-Pacific Software
                     Engineering Conf. (APSEC). 2017. 466−475.
                [24]    Gysel M, Kölbener L, Giersche W, et al. Service cutter: A systematic approach to service decomposition. In: Proc. of the European
                     Conf. on Service-Oriented and Cloud Computing (ESOCC). 2016. 185−200.
                [25]    Abdullah M, Iqbal W,  Erradi  A.  Unsupervised learning  approach for Web  application  auto-decomposition into  microservices.
                     Journal of Systems and Software, 2019,151:243−257.
                [26]    Mazlami G, Cito J, Leitner P. Extraction of microservices from monolithic software architectures. In: Proc. of the IEEE Int’l Conf.
                     on Web Services (ICWS). 2017. 524−531.
                [27]    Jin WX, Liu T, Zheng QH, et al. Functionality-oriented microservice extraction based on execution trace clustering. In: Proc. of the
                     IEEE Int’l Conf. on Web Services (ICWS). 2018. 211−218.
   158   159   160   161   162   163   164   165   166   167   168