Page 181 - 《摩擦学学报》2021年第5期
P. 181
770 摩 擦 学 学 报 第 41 卷
666–669. doi: 10.1126/science.1102896. [ 86 ] Lin Li, Zhang Jincan, Su Haisheng, et al. Towards super-clean
[ 73 ] Zhang Yuanbo, Small J P, Pontius W V, et al. Fabrication and graphene[J]. Nature Communications, 2019, 10(1): 1–7. doi: 10.
electric-field-dependent transport measurements of mesoscopic 1038/s41467-019-09565-4.
graphite devices[J]. Applied Physics Letters, 2005, 86(7): 073104. [ 87 ] Zhang Jincan, Jia Kaicheng, Lin Li, et al. Large-area synthesis of
doi: 10.1063/1.1862334. superclean graphene via selective etching of amorphous carbon
[ 74 ] Jeon I Y, Shin Y R, Sohn G J, et al. Edge-carboxylated graphene with carbon dioxide[J]. Angewandte Chemie International Edition,
nanosheets via ball milling[J]. PNAS, 2012, 109(15): 5588–5593. 2019, 58(41): 14446–14451. doi: 10.1002/anie.201905672.
doi: 10.1073/pnas.1116897109. [ 88 ] Li Dan, Müller M B, Gilje S, et al. Processable aqueous dispersions
[ 75 ] Coleman J N. Liquid-phase exfoliation of nanotubes and of graphene nanosheets[J]. Nature Nanotechnology, 2008, 3(2):
graphene[J]. Advanced Functional Materials, 2009, 19(23): 101–105. doi: 10.1038/nnano.2007.451.
3680–3695. doi: 10.1002/adfm.200901640. [ 89 ] Si Yongchao, Samulski E T. Synthesis of water soluble
[ 76 ] Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of graphene[J]. Nano Letters, 2008, 8(6): 1679–1682. doi: 10.1021/
graphene by liquid-phase exfoliation of graphite[J]. Nature nl080604h.
Nanotechnology, 2008, 3(9): 563–568. doi: 10.1038/nnano.2008. [ 90 ] Chua C K, Pumera M. Chemical reduction of graphene oxide: a
215. synthetic chemistry viewpoint[J]. Chemical Society Reviews, 2014,
[ 77 ] Ciesielski A, Samorì P. Graphene via sonication assisted liquid- 43(1): 291–312. doi: 10.1039/c3cs60303b.
phase exfoliation[J]. Chemical Society Reviews, 2014, 43(1): [ 91 ] Zhao Jun, Li Yingru, Wang Yongfu, et al. Mild thermal reduction
381–398. doi: 10.1039/c3cs60217f. of graphene oxide as a lubrication additive for friction and wear
[ 78 ] Hsieh A G, Korkut S, Punckt C, et al. Dispersion stability of reduction[J]. RSC Advances, 2017, 7(3): 1766–1770. doi: 10.1039/
functionalized graphene in aqueous sodium dodecyl sulfate c6ra26488c.
solutions[J]. Langmuir, 2013, 29(48): 14831–14838. doi: 10.1021/ [ 92 ] Bagri A, Mattevi C, Acik M, et al. Structural evolution during the
la4035326. reduction of chemically derived graphene oxide[J]. Nature
[ 79 ] Zhao Haichao, Qiao Yulin, Zang Yan, et al. Preparation of few- Chemistry, 2010, 2(7): 581–587. doi: 10.1038/nchem.686.
layer graphene by liquid-phase exfoliation and its tribological [ 93 ] Perumal S, Lee H M, Cheong I W. Dispersion Behavior of
properties as deionized water additive[J]. Journal of the Chinese Graphene with Different Solvents and Surfactants[J]. Adhesion and
Ceramic Society, 2015, 43(4): 437–444 (in Chinese) [赵海朝, 乔玉 Interface, 2019, 20(2): 53–60. doi: 10.17702/jai.2019.20.2.53.
林, 臧艳, 等. 液相剥离法制备少层石墨烯及其在去离子水中的 [ 94 ] Li Xinlong. Preparation of alkylated sulfur doped graphene oxide
摩 擦 学 性 能 [J]. 硅 酸 盐 学 报 , 2015, 43(4): 437–444]. doi: 10. and study on its tribological properties[D]. Xuzhou: China
14062/j.issn.0454-5648.2015.04.11. University of Mining and Technology, 2019 (in Chinese) [李新龙.
[ 80 ] Liang Shuaishuai, Shen Zhigang, Yi Min, et al. In-situ exfoliated 烷基化硫掺杂氧化石墨烯的制备及摩擦学性能研究[D]. 徐州:
graphene for high-performance water-based lubricants[J]. Carbon, 中国矿业大学, 2019].
2016, 96: 1181–1190. doi: 10.1016/j.carbon.2015.10.077. [ 95 ] Xiang Xianzheng, Gong Min, Zhang Gangqiang, et al. Tribological
[ 81 ] Norimatsu W, Kusunoki M. Transitional structures of the interface performance of hydroxylated graphene oxide as water-based
between graphene and 6H-SiC (0001)[J]. Chemical Physics Letters, lubricant additives[J]. Lubrication Engineering, 2018, 43(9): 39–46
2009, 468(1-3): 52–562008.11.095. doi: 10.1016/j.cplett. (in Chinese) [项宪政, 龚民, 张刚强, 等. 多羟基化改性石墨烯水
[ 82 ] Azpeitia J, Otero-Irurueta G, Palacio I, et al. High-quality PVD 基 润 滑 添 加 剂 的 摩 擦 学 特 性 [J]. 润 滑 与 密 封 , 2018, 43(9):
graphene growth by fullerene decomposition on Cu foils[J]. 39–46]. doi: 10.3969/j.issn.0254-0150.2018.09.007.
Carbon, 2017, 119: 535–543. doi: 10.1016/j.carbon.2017.04.067. [ 96 ] Liu Xiang. Investigation on preparation and tribological properties
[ 83 ] Reina A, Jia X T, Ho J, et al. Large area, few-layer graphene films of surface functionalized nanocarbon-based lubricant additives
on arbitrary substrates by chemical vapor deposition[J]. Nano with low dimension[D]. Chengdu: Southwest Petroleum
Letters, 2008, 9: 30–5. doi: 10.1021/nl801827v. University, 2017 (in Chinese) [刘翔. 表面功能化低维纳米碳基润
[ 84 ] Yuan G, Lin D, Wang Y, et al. Proton-assisted growth of ultra-flat 滑添加剂的制备与摩擦学性能研究[D]. 成都: 西南石油大学,
graphene films[J]. Nature, 2020, 577(7789): 204–208. doi: 10. 2017].
1038/s41586-019-1870-3. [ 97 ] Su Zhuang. Design and characteristic research of novel lubricating
[ 85 ] Wang Huaping, Xue Xudong, Jiang Qianqing, et al. Primary system based on graphene[J]. Mechanical Engineer, 2016(2):
nucleation-dominated chemical vapor deposition growth for 15–16 (in Chinese) [苏壮. 基于石墨烯的新型润滑体系设计及特
uniform graphene monolayers on dielectric substrate[J]. Journal of 性研究[J]. 机械工程师, 2016(2): 15–16]. doi: 10.3969/j.issn.1002-
the American Chemical Society, 2019, 141(28): 11004–11008. doi: 2333.2016.02.007.
10.1021/jacs.9b05705. [ 98 ] Mungse H P, Kumar N, Khatri O P. Synthesis, dispersion and