Page 138 - 《摩擦学学报》2021年第4期
P. 138

第 4 期                          黄辉, 等: 涉氢环境机械部件的摩擦学研究现状                                       581

                 00055.                                            composites  in  hydrogen  environment[J].  Tribology  International,
            [10]  Zheng  Jinyang,  Zhou  Chilou,  Xu  Ping,  et  al.  R  &  d  of  materials  2015, 92: 162–171. doi: 10.1016/j.triboint.2015.06.001.
                 testing  equipment  in  high-pressure  hydrogen[J].  Acta  Energiae  [24]  Theiler  G,  Gradt  T.  Friction  and  wear  behaviour  of  polymers  in
                 Solaris Sinica, 2013, 34(8): 1477–1483 (in Chinese) [郑津洋, 周池  liquid hydrogen[J]. Cryogenics, 2018, 93: 1–6. doi: 10.1016/j.cryo-
                 楼, 徐平, 等. 高压氢环境材料耐久性测试装置的研究进展[J]. 太               genics.2018.05.002.
                 阳 能 学 报 ,  2013,  34(8):  1477–1483].  doi:  10.3969/j.issn.0254-  [25]  Sawae  Y,  Miyakoshi  E,  DoiS,  et  al.  Friction  and  wear  of  bronze
                 0096.2013.08.028.                                 filled PTFE and graphite filled PTFE in 40 MPA hydrogen gas[C].
            [11]  Liu Xiaoliang, Wang Bing, Fan Zhichao, et al. Summary on material  Proceedings  of  ASME/STLE  2011  International  Joint  Tribology
                 testing apparatus in hydrogen environment[J]. Engineering & Test,  Conference,  October  24-26,  2011,  Los  Angeles,  California,  USA.
                 2016, 56(1): 1–6, 14 (in Chinese) [刘孝亮, 王冰, 范志超, 等. 氢气  2012: 249–251. doi:10.1115/IJTC2011-61215.
                 环境材料力学性能测试仪研发概述[J]. 工程与试验, 2016, 56(1):       [26]  Sawae  Y,  Nakashima  K,  DoiS,  et  al.  Effects  of  high  pressure
                 1–6, 14]. doi: 10.3969/j.issn.1674-3407.2016.01.001.  hydrogen on wear of PTFE and PTFE composite[C]. Proceedings of
            [12]  Duranty  E  R,  Roosendaal  T  J,  Pitman  S  G,  et  al.  An  in  situ  ASME/STLE  2009  International  Joint  Tribology  Conference,
                 tribometer  for  measuring  friction  and  wear  of  polymers  in  a  high  October 19-21, 2009, Memphis, Tennessee, USA. 2010: 233–235.
                 pressure hydrogen environment[J]. Review of Scientific Instruments,  doi:10.1115/IJTC2009-15096.
                 2017, 88(9): 095114. doi: 10.1063/1.5001836.  [27]  Alvine K J, Vijayakumar M, Bowden M E, et al. Hydrogen diffusion
            [13]  Duranty E R, Roosendaal T J, Pitman S G, et al. In situ high pressure  in lead zirconate titanate and Barium titanate[J]. Journal of Applied
                 hydrogen tribological testing of common polymer materials used in  Physics, 2012, 112(4): 043511. doi: 10.1063/1.4748283.
                 the  hydrogen  delivery  infrastructure[J].  Journal  of  Visualized  [28]  Alvine  K  J,  Shutthanandan  V,  Bennett  W  D,  et  al.  High-pressure
                 Experiments, 2018(133): 56884. doi: 10.3791/56884.  hydrogen materials compatibility of piezoelectric films[J]. Applied
            [14]  Sugimura  J.  Overview  of  tribology  researches  for  high-pressure  Physics Letters, 2010, 97(22): 221911. doi: 10.1063/1.3517445.
                 hydrogen  systems[J].  Tribologie  und  Schmierungstechnik,  2019,  [29]  Ikarashi  N.  Analytical  transmission  electron  microscopy  of
                 66(2): 24–32.                                     hydrogen-induced degradation in ferroelectric Pb(Zr, Ti)O 3  on a Pt
            [15]  Jones R H, Thomas G J. Materials for the hydrogen economy[M].  electrode[J]. Applied Physics Letters, 1998, 73(14): 1955–1957. doi:
                 CRC Press, 2007.                                  10.1063/1.122333.
            [16]  Otsu  T,  Tanaka  H,  Sugimura  J.  Effect  of  slip  on  permeation  of  [30]  Alvine K J, Tyagi M, Brown C M, et al. Hydrogen species motion in
                 hydrogen  into  steel  in  cyclic  contact[J].  Tribology  Letters,  2016,  piezoelectrics: a quasi-elastic neutron scattering study[J]. Journal of
                 63(1): 1–8. doi: 10.1007/s11249-016-0691-x.       Applied Physics, 2012, 111(5): 053505. doi: 10.1063/1.3691114.
            [17]  Tanimoto  H,  Tanaka  H,  Sugimura  J.  Observation  of  hydrogen  [31]  Alvine  K  J,  Shutthanandan  V,  Arey  B  W,  et  al.  Pb  nanowire
                 permeation  into  fresh  bearing  steel  surface  by  thermal  desorption  formation  on  Al/lead  zirconate  titanate  surfaces  in  high-pressure
                 spectroscopy[J].  Tribology  Online,  2011,  6(7):  291–296.  doi:  hydrogen[J]. Journal of Applied Physics, 2012, 112(1): 013533. doi:
                 10.2474/trol.6.291.                               10.1063/1.4731721.
            [18]  Li  Haijiang,  Yagi  K,  Sugimura  J,  et  al.  Role  of  wear  particles  in  [32]  Tanaka H, Morofuji T, Enami K, et al. Effect of environmental gas
                 scuffing  initiation[J].  Tribology  Online,  2013,  8(5):  285–294.  doi:  on  surface  initiated  rolling  contact  fatigue[J].  Tribology  Online,
                 10.2474/trol.8.285.                               2013, 8(1): 90–96. doi: 10.2474/trol.8.90.
            [19]  Yagi  K,  Ebisu  Y,  Sugimura  J,  et  al.  In  situ  observation  of  wear  [33]  Yamamoto  S.  Hydrogen  embrittlement  of  nuclear  power  plant
                 process before and during scuffing in sliding contact[J]. Tribology  materials[J].  Materials  Transactions,  2004,  45(8):  2647–2649.  doi:
                 Letters, 2011, 43(3): 361–368. doi: 10.1007/s11249-011-9817-3.  10.2320/matertrans.45.2647.
            [20]  Yamabe  J,  Nishimura  S.  Hydrogen-induced  degradation  of  rubber  [34]  Lu  Gang,  Kaxiras  E.  Hydrogen  embrittlement  of  aluminum:  the
                 seals[M]. Gaseous Hydrogen Embrittlement of Materials in Energy  crucial role of vacancies[J]. Physical Review Letters, 2005, 94(15):
                 Technologies.   Amsterdam:   Elsevier,   2012:   769  –816.  155501. doi: 10.1103/physrevlett.94.155501.
                 doi:10.1533/9780857093899.3.769.              [35]  Otsu  T,  Tanaka  H,  Ohnishi  K,  et  al.  Simple  experiment  on
            [21]  Theiler G, Gradt T. Polymer composites for tribological applications  permeation  of  hydrogen  into  steel  in  cyclic  contact[J].  Tribology
                 in  hydrogen  environment[C].  Proc  2.  International  Conference  on  Online, 2011, 6(7): 311–316. doi: 10.2474/trol.6.311.
                 Hydrogen Safety, San Sebastian, 2007.         [36]  Tanaka H, Niste V B, Abe Y, et al. The effect of lubricant additives
            [22]  Theiler  G.  PTFE-  and  PEEK-matrix  composites  for  tribological  on hydrogen permeation under rolling contact[J]. Tribology Letters,
                 applications  at  cryogenic  temperature  and  in  hydrogen[D].  Berlin:  2017, 65(3): 1–8. doi: 10.1007/s11249-017-0877-x.
                 Technical University of Berlin, 2005.         [37]  Sun Jianlin, Meng Yanan. Lubrication and repair of metal surface by
            [23]  Theiler  G,  Gradt  T.  Tribological  characteristics  of  polyimide  nano-fluid[J]. Surface Technology, 2019, 48(11): 1–14 (in Chinese)
   133   134   135   136   137   138   139   140   141   142   143