Page 138 - 《摩擦学学报》2021年第4期
P. 138
第 4 期 黄辉, 等: 涉氢环境机械部件的摩擦学研究现状 581
00055. composites in hydrogen environment[J]. Tribology International,
[10] Zheng Jinyang, Zhou Chilou, Xu Ping, et al. R & d of materials 2015, 92: 162–171. doi: 10.1016/j.triboint.2015.06.001.
testing equipment in high-pressure hydrogen[J]. Acta Energiae [24] Theiler G, Gradt T. Friction and wear behaviour of polymers in
Solaris Sinica, 2013, 34(8): 1477–1483 (in Chinese) [郑津洋, 周池 liquid hydrogen[J]. Cryogenics, 2018, 93: 1–6. doi: 10.1016/j.cryo-
楼, 徐平, 等. 高压氢环境材料耐久性测试装置的研究进展[J]. 太 genics.2018.05.002.
阳 能 学 报 , 2013, 34(8): 1477–1483]. doi: 10.3969/j.issn.0254- [25] Sawae Y, Miyakoshi E, DoiS, et al. Friction and wear of bronze
0096.2013.08.028. filled PTFE and graphite filled PTFE in 40 MPA hydrogen gas[C].
[11] Liu Xiaoliang, Wang Bing, Fan Zhichao, et al. Summary on material Proceedings of ASME/STLE 2011 International Joint Tribology
testing apparatus in hydrogen environment[J]. Engineering & Test, Conference, October 24-26, 2011, Los Angeles, California, USA.
2016, 56(1): 1–6, 14 (in Chinese) [刘孝亮, 王冰, 范志超, 等. 氢气 2012: 249–251. doi:10.1115/IJTC2011-61215.
环境材料力学性能测试仪研发概述[J]. 工程与试验, 2016, 56(1): [26] Sawae Y, Nakashima K, DoiS, et al. Effects of high pressure
1–6, 14]. doi: 10.3969/j.issn.1674-3407.2016.01.001. hydrogen on wear of PTFE and PTFE composite[C]. Proceedings of
[12] Duranty E R, Roosendaal T J, Pitman S G, et al. An in situ ASME/STLE 2009 International Joint Tribology Conference,
tribometer for measuring friction and wear of polymers in a high October 19-21, 2009, Memphis, Tennessee, USA. 2010: 233–235.
pressure hydrogen environment[J]. Review of Scientific Instruments, doi:10.1115/IJTC2009-15096.
2017, 88(9): 095114. doi: 10.1063/1.5001836. [27] Alvine K J, Vijayakumar M, Bowden M E, et al. Hydrogen diffusion
[13] Duranty E R, Roosendaal T J, Pitman S G, et al. In situ high pressure in lead zirconate titanate and Barium titanate[J]. Journal of Applied
hydrogen tribological testing of common polymer materials used in Physics, 2012, 112(4): 043511. doi: 10.1063/1.4748283.
the hydrogen delivery infrastructure[J]. Journal of Visualized [28] Alvine K J, Shutthanandan V, Bennett W D, et al. High-pressure
Experiments, 2018(133): 56884. doi: 10.3791/56884. hydrogen materials compatibility of piezoelectric films[J]. Applied
[14] Sugimura J. Overview of tribology researches for high-pressure Physics Letters, 2010, 97(22): 221911. doi: 10.1063/1.3517445.
hydrogen systems[J]. Tribologie und Schmierungstechnik, 2019, [29] Ikarashi N. Analytical transmission electron microscopy of
66(2): 24–32. hydrogen-induced degradation in ferroelectric Pb(Zr, Ti)O 3 on a Pt
[15] Jones R H, Thomas G J. Materials for the hydrogen economy[M]. electrode[J]. Applied Physics Letters, 1998, 73(14): 1955–1957. doi:
CRC Press, 2007. 10.1063/1.122333.
[16] Otsu T, Tanaka H, Sugimura J. Effect of slip on permeation of [30] Alvine K J, Tyagi M, Brown C M, et al. Hydrogen species motion in
hydrogen into steel in cyclic contact[J]. Tribology Letters, 2016, piezoelectrics: a quasi-elastic neutron scattering study[J]. Journal of
63(1): 1–8. doi: 10.1007/s11249-016-0691-x. Applied Physics, 2012, 111(5): 053505. doi: 10.1063/1.3691114.
[17] Tanimoto H, Tanaka H, Sugimura J. Observation of hydrogen [31] Alvine K J, Shutthanandan V, Arey B W, et al. Pb nanowire
permeation into fresh bearing steel surface by thermal desorption formation on Al/lead zirconate titanate surfaces in high-pressure
spectroscopy[J]. Tribology Online, 2011, 6(7): 291–296. doi: hydrogen[J]. Journal of Applied Physics, 2012, 112(1): 013533. doi:
10.2474/trol.6.291. 10.1063/1.4731721.
[18] Li Haijiang, Yagi K, Sugimura J, et al. Role of wear particles in [32] Tanaka H, Morofuji T, Enami K, et al. Effect of environmental gas
scuffing initiation[J]. Tribology Online, 2013, 8(5): 285–294. doi: on surface initiated rolling contact fatigue[J]. Tribology Online,
10.2474/trol.8.285. 2013, 8(1): 90–96. doi: 10.2474/trol.8.90.
[19] Yagi K, Ebisu Y, Sugimura J, et al. In situ observation of wear [33] Yamamoto S. Hydrogen embrittlement of nuclear power plant
process before and during scuffing in sliding contact[J]. Tribology materials[J]. Materials Transactions, 2004, 45(8): 2647–2649. doi:
Letters, 2011, 43(3): 361–368. doi: 10.1007/s11249-011-9817-3. 10.2320/matertrans.45.2647.
[20] Yamabe J, Nishimura S. Hydrogen-induced degradation of rubber [34] Lu Gang, Kaxiras E. Hydrogen embrittlement of aluminum: the
seals[M]. Gaseous Hydrogen Embrittlement of Materials in Energy crucial role of vacancies[J]. Physical Review Letters, 2005, 94(15):
Technologies. Amsterdam: Elsevier, 2012: 769 –816. 155501. doi: 10.1103/physrevlett.94.155501.
doi:10.1533/9780857093899.3.769. [35] Otsu T, Tanaka H, Ohnishi K, et al. Simple experiment on
[21] Theiler G, Gradt T. Polymer composites for tribological applications permeation of hydrogen into steel in cyclic contact[J]. Tribology
in hydrogen environment[C]. Proc 2. International Conference on Online, 2011, 6(7): 311–316. doi: 10.2474/trol.6.311.
Hydrogen Safety, San Sebastian, 2007. [36] Tanaka H, Niste V B, Abe Y, et al. The effect of lubricant additives
[22] Theiler G. PTFE- and PEEK-matrix composites for tribological on hydrogen permeation under rolling contact[J]. Tribology Letters,
applications at cryogenic temperature and in hydrogen[D]. Berlin: 2017, 65(3): 1–8. doi: 10.1007/s11249-017-0877-x.
Technical University of Berlin, 2005. [37] Sun Jianlin, Meng Yanan. Lubrication and repair of metal surface by
[23] Theiler G, Gradt T. Tribological characteristics of polyimide nano-fluid[J]. Surface Technology, 2019, 48(11): 1–14 (in Chinese)