Page 74 - 《摩擦学学报》2021年第3期
P. 74

第 3 期                    邱涵, 等: 原位自生TiC对低合金马氏体钢磨料磨损性能的影响                                     363

            量犁沟在遇到碳化物后就变窄或终止了,如图9(c)所                              and  ultra-high  strength[J].  Iron  &  Steel,  2010,  45(8):  61–64,  69
            示. 综上所述,两种环境下两种材料的磨损机制均主                               (in Chinese) [王昭东, 邓想涛, 曹艺, 等. 新型低成本超高强低合金
                                                                   耐磨钢研究及其工业化应用[J]. 钢铁, 2010, 45(8): 61–64, 69]. doi:
            要是磨粒犁削磨损. 由于TiC对煤粉的犁削行为并没
                                                                   10.13228/j.boyuan.issn0449-749x.2010.08.001.
            有起到明显的阻碍作用,而JFE400钢的基体硬度又大
                                                               [  5  ]  Shi Zhiyuan. Research on wear pattern and cause of middle pan in
            于Ti60,所以JFE400在纯煤粉环境下呈现出较优的抗
                                                                   heavy-duty  scraper  conveyor[J].  Colliery  Mechanical  &  Electrical
            磨料磨损性能. 但在纯煤粉掺杂40%(质量分数)石英                             Technology, 2016, (3): 46–48 (in Chinese) [史志远. 重载刮板输送
            砂环境下,由于TiC对磨料的犁削行为有明显的阻碍                               机中部槽磨损形态及成因研究[J]. 煤矿机电, 2016, (3): 46–48].

            作用,所以Ti60呈现出较优的抗磨料磨损的性能.                               doi: 10.16545/j.cnki.cmet.2016.03.013.

                                                               [  6  ]  Huang Manman, Ju Zilai, Jiang Likun. Effects of carbon content on
            3    结论                                                microstructure and mechanical properties of new wear resistant cast
                                                                   steel[J].  Foundry  Technology,  2014,  35(3):  479–481  (in Chinese)
                a. 通过MMH-5A环块三体磨料磨损试验机对自
                                                                   [黄曼曼, 琚子来, 姜利坤. 碳含量对新型耐磨铸钢组织和力学性
            主研发的含有TiC马氏体钢Ti60和商用马氏体钢
                                                                   能的影响[J]. 铸造技术, 2014, 35(3): 479–481].
            JFE400进行磨料磨损性能试验,研究表明在纯煤粉和
                                                               [  7  ]  Ye  Ding,  Bao  Wenbing,  Li  Runquan.  Effect  of  carbon  content  on
            纯煤粉掺杂40%(质量分数)石英砂的两种磨料环境
                                                                   microstructure  and  properties  of  microalloyed  cast  Steel[J].  China
            下,材料的磨损机制均主要是犁削磨损.                                     Plant Engineering, 2018, (10): 156–158 (in Chinese) [叶丁, 包文兵,
                b. 在纯煤粉磨料环境下,由于煤粉颗粒的层状结                            李润泉. 碳含量对微合金化铸钢组织与性能的影响[J]. 中国设备
            构及低硬度的特性,使得煤粉颗粒在法向载荷作用下                                工程, 2018, (10): 156–158]. doi: 10.3969/j.issn.1671-0711.2018.10.
            压入基体的深度浅,所受的阻力小导致TiC硬质相对                               075.
            煤的犁削行为起不到阻碍作用,且JFE400钢的基体硬                         [  8  ]  Liu Luojin, Liang Xiaokai, Liu Jun, et al. Precipitation process of
                                                                   TiC  in  low  alloy  martensitic  steel  and  its  effect  on  wear
            度又大于Ti60,所以JFE400钢在纯煤粉环境下呈现出
                                                                   resistance[J]. ISIJ International, 2020, 60(1): 168–174. doi: 10.2355/
            较优的抗磨料磨损的性能.
                                                                   isijinternational.isijint-2019-151.
                c. 在纯煤粉掺杂40%(质量分数)石英砂磨料环境
                                                               [  9  ]  Deng X T, Fu T L, Wang Z D, et al. Epsilon carbide precipitation
            下,块状结构且具有高硬度的石英砂颗粒在法向载荷
                                                                   and wear behaviour of low alloy wear resistant steels[J]. Materials
            作用下压入基体的深度较深,TiC对其阻力较大,且石                              Science   and   Technology,   2016,   32(4):   320–327.   doi:
            英砂不容易破碎,导致石英砂的犁削行为受到TiC硬                               10.1080/02670836.2015.1137410.
            质相的阻碍,所以Ti60钢在纯煤粉掺杂40%(质量分                         [10]  Liang  Xiaokai,  Sun  Xinjun,  Yong  Qilong,  et  al.  Study  on
            数)石英砂环境下呈现出较优的抗磨料磨损的性能.                                performance  of  TiC  particle  reinforced  martensite  wear-resistant
                                                                   steel[J].  Iron  Steel  Vanadium  Titanium,  2017,  38(1):  48–53
            参 考 文 献
                                                                   (in Chinese) [梁小凯, 孙新军, 雍岐龙, 等. TiC颗粒强化型马氏体
            [  1  ]  Zhang  Jinzhi,  Mi  Guofa,  Guan  Xizhou.  Research  and  application  耐 磨 钢 的 性 能 研 究 [J].  钢 铁 钒 钛 ,  2017,  38(1):  48–53].  doi:
                 progress  of  low  alloy  wear  resistant  steel[J].  MW  Metal  Forming,  10.7513/j.issn.1004-7638.2017.01.009.
                 2009, (15): 29–31 (in Chinese) [张锦志, 米国发, 关西周. 低合金耐  [11]  Luo  Haiwen,  Shen  Guohui.  Progress  and  perspective  of  ultra-high
                 磨钢的研究与应用进展[J]. 金属加工(热加工), 2009, (15): 29–31].     strength steels having high toughness[J]. Acta Metallurgica Sinica,
            [  2  ]  Liu  Chunming,  Miao  Jun,  Wang  Lijun.  Microstructure  and  2020, 56(4): 494–512 (in Chinese) [罗海文, 沈国慧. 超高强高韧化
                 properties  of  low  alloy  abrasion  resistant  steel[J].  Journal  of  钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494–512]. doi:
                 Materials and Metallurgy, 2014, 13(2): 92–102, 107 (in Chinese) [刘  10.11900/0412.1961.2019.00328.
                 春明, 苗隽, 王立军. 低合金耐磨钢的组织与性能[J]. 材料与冶金           [12]  Liu Luojin, Sun Xinjun, Liang Xiaokai, et al. Wear resistance of TiC
                 学报, 2014, 13(2): 92–102, 107]. doi: 10.14186/j.cnki.1671-6620.2014.  particle  reinforced  low  alloy  ferritic  wear-resistant  steel[J].  Heat
                 02.006.                                           Treatment of Metals, 2020, 45(2): 56–60 (in Chinese) [刘罗锦, 孙新
            [  3  ]  Deng Xiangtao, Wang Zhaodong, Han Yi, et al. Microstructure and  军, 梁小凯, 等. TiC颗粒增强低合金铁素体钢的耐磨性能[J]. 金属
                 abrasive  wear  behavior  of  medium  carbon  low  alloy  martensitic  热处理, 2020, 45(2): 56–60]. doi: 10.13251/j.issn.0254-6051.2020.
                 abrasion  resistant  steel[J].  Journal  of  Iron  and  Steel  Research,  02.011.
                 International,  2014,  21(1):  98–103.  doi:  10.1016/S1006-706X(14)  [13]  Liu  Xiangyi,  Zheng  Kaihong,  Luo  Tiegang,  et  al.  Three  body
                 60015-7.                                          abrasive  wear  properties  of  in  situ  TiC  iron  matrix  composites[J].
            [  4  ]  Wang Zhaodong, Deng Xiangtao, Cao Yi, et al. Development and  Foundry Technology, 2018, 39(5): 976–979 (in Chinese) [刘相熠,
                 industrial application of new low alloy abrasion steel with low cost  郑开宏, 罗铁钢, 等. 自生TiC铁基复合材料的三体磨料磨损性能
   69   70   71   72   73   74   75   76   77   78   79