Page 74 - 《摩擦学学报》2021年第3期
P. 74
第 3 期 邱涵, 等: 原位自生TiC对低合金马氏体钢磨料磨损性能的影响 363
量犁沟在遇到碳化物后就变窄或终止了,如图9(c)所 and ultra-high strength[J]. Iron & Steel, 2010, 45(8): 61–64, 69
示. 综上所述,两种环境下两种材料的磨损机制均主 (in Chinese) [王昭东, 邓想涛, 曹艺, 等. 新型低成本超高强低合金
耐磨钢研究及其工业化应用[J]. 钢铁, 2010, 45(8): 61–64, 69]. doi:
要是磨粒犁削磨损. 由于TiC对煤粉的犁削行为并没
10.13228/j.boyuan.issn0449-749x.2010.08.001.
有起到明显的阻碍作用,而JFE400钢的基体硬度又大
[ 5 ] Shi Zhiyuan. Research on wear pattern and cause of middle pan in
于Ti60,所以JFE400在纯煤粉环境下呈现出较优的抗
heavy-duty scraper conveyor[J]. Colliery Mechanical & Electrical
磨料磨损性能. 但在纯煤粉掺杂40%(质量分数)石英 Technology, 2016, (3): 46–48 (in Chinese) [史志远. 重载刮板输送
砂环境下,由于TiC对磨料的犁削行为有明显的阻碍 机中部槽磨损形态及成因研究[J]. 煤矿机电, 2016, (3): 46–48].
作用,所以Ti60呈现出较优的抗磨料磨损的性能. doi: 10.16545/j.cnki.cmet.2016.03.013.
[ 6 ] Huang Manman, Ju Zilai, Jiang Likun. Effects of carbon content on
3 结论 microstructure and mechanical properties of new wear resistant cast
steel[J]. Foundry Technology, 2014, 35(3): 479–481 (in Chinese)
a. 通过MMH-5A环块三体磨料磨损试验机对自
[黄曼曼, 琚子来, 姜利坤. 碳含量对新型耐磨铸钢组织和力学性
主研发的含有TiC马氏体钢Ti60和商用马氏体钢
能的影响[J]. 铸造技术, 2014, 35(3): 479–481].
JFE400进行磨料磨损性能试验,研究表明在纯煤粉和
[ 7 ] Ye Ding, Bao Wenbing, Li Runquan. Effect of carbon content on
纯煤粉掺杂40%(质量分数)石英砂的两种磨料环境
microstructure and properties of microalloyed cast Steel[J]. China
下,材料的磨损机制均主要是犁削磨损. Plant Engineering, 2018, (10): 156–158 (in Chinese) [叶丁, 包文兵,
b. 在纯煤粉磨料环境下,由于煤粉颗粒的层状结 李润泉. 碳含量对微合金化铸钢组织与性能的影响[J]. 中国设备
构及低硬度的特性,使得煤粉颗粒在法向载荷作用下 工程, 2018, (10): 156–158]. doi: 10.3969/j.issn.1671-0711.2018.10.
压入基体的深度浅,所受的阻力小导致TiC硬质相对 075.
煤的犁削行为起不到阻碍作用,且JFE400钢的基体硬 [ 8 ] Liu Luojin, Liang Xiaokai, Liu Jun, et al. Precipitation process of
TiC in low alloy martensitic steel and its effect on wear
度又大于Ti60,所以JFE400钢在纯煤粉环境下呈现出
resistance[J]. ISIJ International, 2020, 60(1): 168–174. doi: 10.2355/
较优的抗磨料磨损的性能.
isijinternational.isijint-2019-151.
c. 在纯煤粉掺杂40%(质量分数)石英砂磨料环境
[ 9 ] Deng X T, Fu T L, Wang Z D, et al. Epsilon carbide precipitation
下,块状结构且具有高硬度的石英砂颗粒在法向载荷
and wear behaviour of low alloy wear resistant steels[J]. Materials
作用下压入基体的深度较深,TiC对其阻力较大,且石 Science and Technology, 2016, 32(4): 320–327. doi:
英砂不容易破碎,导致石英砂的犁削行为受到TiC硬 10.1080/02670836.2015.1137410.
质相的阻碍,所以Ti60钢在纯煤粉掺杂40%(质量分 [10] Liang Xiaokai, Sun Xinjun, Yong Qilong, et al. Study on
数)石英砂环境下呈现出较优的抗磨料磨损的性能. performance of TiC particle reinforced martensite wear-resistant
steel[J]. Iron Steel Vanadium Titanium, 2017, 38(1): 48–53
参 考 文 献
(in Chinese) [梁小凯, 孙新军, 雍岐龙, 等. TiC颗粒强化型马氏体
[ 1 ] Zhang Jinzhi, Mi Guofa, Guan Xizhou. Research and application 耐 磨 钢 的 性 能 研 究 [J]. 钢 铁 钒 钛 , 2017, 38(1): 48–53]. doi:
progress of low alloy wear resistant steel[J]. MW Metal Forming, 10.7513/j.issn.1004-7638.2017.01.009.
2009, (15): 29–31 (in Chinese) [张锦志, 米国发, 关西周. 低合金耐 [11] Luo Haiwen, Shen Guohui. Progress and perspective of ultra-high
磨钢的研究与应用进展[J]. 金属加工(热加工), 2009, (15): 29–31]. strength steels having high toughness[J]. Acta Metallurgica Sinica,
[ 2 ] Liu Chunming, Miao Jun, Wang Lijun. Microstructure and 2020, 56(4): 494–512 (in Chinese) [罗海文, 沈国慧. 超高强高韧化
properties of low alloy abrasion resistant steel[J]. Journal of 钢的研究进展和展望[J]. 金属学报, 2020, 56(4): 494–512]. doi:
Materials and Metallurgy, 2014, 13(2): 92–102, 107 (in Chinese) [刘 10.11900/0412.1961.2019.00328.
春明, 苗隽, 王立军. 低合金耐磨钢的组织与性能[J]. 材料与冶金 [12] Liu Luojin, Sun Xinjun, Liang Xiaokai, et al. Wear resistance of TiC
学报, 2014, 13(2): 92–102, 107]. doi: 10.14186/j.cnki.1671-6620.2014. particle reinforced low alloy ferritic wear-resistant steel[J]. Heat
02.006. Treatment of Metals, 2020, 45(2): 56–60 (in Chinese) [刘罗锦, 孙新
[ 3 ] Deng Xiangtao, Wang Zhaodong, Han Yi, et al. Microstructure and 军, 梁小凯, 等. TiC颗粒增强低合金铁素体钢的耐磨性能[J]. 金属
abrasive wear behavior of medium carbon low alloy martensitic 热处理, 2020, 45(2): 56–60]. doi: 10.13251/j.issn.0254-6051.2020.
abrasion resistant steel[J]. Journal of Iron and Steel Research, 02.011.
International, 2014, 21(1): 98–103. doi: 10.1016/S1006-706X(14) [13] Liu Xiangyi, Zheng Kaihong, Luo Tiegang, et al. Three body
60015-7. abrasive wear properties of in situ TiC iron matrix composites[J].
[ 4 ] Wang Zhaodong, Deng Xiangtao, Cao Yi, et al. Development and Foundry Technology, 2018, 39(5): 976–979 (in Chinese) [刘相熠,
industrial application of new low alloy abrasion steel with low cost 郑开宏, 罗铁钢, 等. 自生TiC铁基复合材料的三体磨料磨损性能