Page 51 - 《摩擦学学报》2021年第2期
P. 51
196 摩 擦 学 学 报 第 41 卷
81–87]. doi: 10.16078/j.tribology.2018.05.010. formed by in-situ decomposition of AgNbO 3 [J]. Tribology
[17] Muratore C, Voevodin A A. Molybdenum disulfide as a lubricant International, 2020, 141: 105898. doi: 10.1016/j.triboint.2019.
and catalyst in adaptive nanocomposite coatings[J]. Surface and 105898.
Coatings Technology, 2006, 201(7): 4125–4130. doi: 10.1016/ [29] Masó N, Woodward D I, Thomas P A, et al. Structural
j.surfcoat.2006.08.014. characterisation of ferroelectric Ag 2 Nb 4 O 11 and dielectric
[18] Aouadi S M, Paudel Y, Luster B, et al. Adaptive Mo 2 N/MoS 2 /Ag Ag 2 Ta 4 O 11 [J]. Journal of Materials Chemistry, 2011, 21(8): 2715.
tribological nanocomposite coatings for aerospace applications[J]. doi: 10.1039/C0JM02540B.
Tribology Letters, 2008, 29(2): 95–103. doi: 10.1007/s11249-007- [30] Feng X C, Jia J H, Wang W Z, et al. Mechanical and tribological
9286-x. properties of NiAl-NbC-Ag composites prepared by hot-pressing
[19] Yang Jingjing, Shan Yu, Fu Yingying, et al. Effects of in-situ sintering[J]. Journal of Materials Research, 2017, 32(12):
synthesis nanoscale Ag/Ag 2 MoO 4 composite lubricants on
2361–2372. doi: 10.1557/jmr.2017.177.
tribological properties of YSZ coatings[J]. Tribology, 2019, 39(6): [31] Guo Qingwei, Wang Zhaoxin. Modern niobium tantalum
756–765 (in Chinese) [杨 晶 晶 , 陕 钰 , 付 英 英 , 等 . 原 位 合 成
metallurgy[M]. Beijing: Metallurgical Industry Press, 2009(in
Ag/Ag 2 MoO 4 纳米复合润滑剂对YSZ涂层摩擦学性能的影响[J].
Chinese) [郭青蔚, 王肇信. 现代铌钽冶金[M]. 北京: 冶金工业出
摩 擦 学 学 报 , 2019, 39(6): 756–765]. doi: 10.16078/j.tribology.
版社, 2009].
2019048.
[32] Yang Sulan, Wang Wenzhen, Ma Qin, et al. Effect of Al on the
[20] Aouadi S M, Singh D P, Stone D, et al. Adaptive VN/Ag
tribological properties of Ni-based alloys[J]. Tribology, 2017, 37(5):
nanocomposite coatings with lubricious behavior from 25 to 1000 ℃
663–669 (in Chinese) [杨素兰, 王文珍, 马勤, 等. Al元素对Ni基合
[J]. Acta Materialia, 2010, 58(16): 5326–5331. doi:
金摩擦学性能的研究[J]. 摩擦学学报, 2017, 37(5): 663–669]. doi:
10.1016/j.actamat.2010.06.006.
10.16078/j.tribology.2017.05.014.
[21] Liu E Y, Gao Y M, Bai Y P, et al. Tribological properties of self-
[33] Shan Yu, Liu Feng, Wang Jianyi, et al. High temperature
lubricating NiAl/Mo-based composites containing AgVO 3
tribological properties of NiCrW-Al 2 O 3 -SrCO 3 -Ag cement
nanowires[J]. Materials characterization, 2014, 97: 116–124. doi:
composites[J]. Tribology, 2015, 35(6): 707–713 (in Chinese) [陕钰,
10.1016/j.matchar.2014.09.006.
刘峰, 汪建义, 等. NiCrW-Al 2 O 3 -SrCO 3 -Ag金属陶瓷复合材料的
[22] Stone D, Migas J, Martini A, et al. Adaptive NbN/Ag coatings for
高温摩擦学性能研究[J]. 摩擦学学报, 2015, 35(6): 707–713]. doi:
high temperature tribological applications[J]. Surface and Coatings
10.16078/j.tribology.2015.06.009.
Technology, 2012, 206(19-20): 4316–4321. doi: 10.1016/j.surfcoat.
[34] Tjong S, Lau K. Sliding wear of stainless steel matrix composite
2012.04.054.
reinforced with TiB 2 particles[J]. Materials Letters, 1999, 41(4):
[23] Stone D, Harbin S, Mohseni H, et al. Lubricious silver tantalate
153–158. doi: 10.1016/s0167-577x(99)00123-8.
films for extreme temperature applications[J]. Surface and Coatings
[35] Rozier P, Szajwaj O. Crystal chemistry in the Ag 2 O–Nb 2 O 5 system:
Technology, 2013, 217: 140–146. doi: 10.1016/j.surfcoat.2012.
AgNb 3 O 8 structure determination[J]. Journal of Solid State
12.004.
Chemistry, 2008, 181(2): 228–234. doi: 10.1016/j.jssc.2007.11.013.
[24] Gao H, Stone D S, Mohseni H, et al. Mechanistic studies of high
[36] Wang S, Cheng J, Zhu S, et al. Frictional properties of Ti 3 AlC 2
temperature friction reduction in silver tantalate[J]. Applied Physics
ceramic against different counterparts in deionized water and
Letters, 102(12): 121603. doi: 10.1063/1.4798555.
artificial seawater[J]. Ceramics International, 2016, 42(3):
[25] Muratore C, Voevodin A A. Chameleon coatings: adaptive surfaces
4578–4585. doi: 10.1016/j.ceramint.2015.11.153.
to reduce friction and wear in extreme environments[J]. Annual
Review of Materials Research, 2009, 39: 297–324. doi: 10.1146/ [37] Zhu S Y, Ma J Q, Tan H, et al. Tribological behavior of nickel
annurev-matsci-082908-145259. aluminum-silver solid-lubricating alloy coupled with different tribo-
[26] Hilton M R, Fleischauer P D. Applications of solid lubricant films in pairs lubricated by seawater[J]. Tribology International, 2019, 131:
spacecraft[J]. Surface and Coatings Technology, 1992, 54: 435–441. 158–166. doi: 10.1016/j.triboint.2018.10.030.
doi: 10.1016/S0257-8972(07)80062-4. [38] Erdemir A. A crystal chemical approach to the formulation of self-
[27] Dong H J, Chen G, Sun J X, et al. Stability, durability and lubricating nanocomposite coatings[J]. Surface & Coatings
regeneration ability of a novel Ag-based photocatalyst, Technology, 2005, 200(5-6): 1792–1796. doi: 10.1016/j.surfcoat.2005.
Ag 2 Nb 4 O 11 [J]. Chemical Communications, 2014, 50(50): 6596. doi: 08.054.
10.1039/C4CC01183J. [39] Erdemir A. A crystal-chemical approach to lubrication by solid
[28] Feng X C, Lu C, Jia J H, et al. High temperature tribological oxides[J]. Tribology Letters, 2000, 8(2-3): 97–102. doi: 10.1023/a:
behaviors and wear mechanisms of NiAl –NbC –Ag composites 1019183101329.