Page 90 - 《摩擦学学报》2020年第5期
P. 90
第 5 期 王泽勇, 等: 微量Ag元素对TiAlN涂层摩擦学性能的影响 645
TiAlN及不同Ag含量的TiAlAgN涂层. 三种涂层的晶 10.1016/j.tsf.2009.03.082.
粒均以典型的柱状晶方式生长,厚度分别为4.18、 [ 7 ] Yu D, Wang C, Cheng X, et al. Microstructure and properties of
TiAlSiN coatings prepared by hybrid PVD technology[J]. Thin Solid
5.31和4.69 μm. XRD的检测结果表明固体润滑剂Ag
Films, 2009, 517(17): 4950–4955. doi: 10.1016/j.tsf.2009.03.091.
的掺入能够细化晶粒,从而使涂层变得更加致密.
[ 8 ] Carvalho S, Rebouta L, Cavaleiro A, et al. Microstructure and
b. 三种涂层在不同温度下的磨损机理均以黏着
mechanical properties of nanocomposite (Ti, Si, Al) N coatings[J].
磨损和磨粒磨损为主. 室温条件下TiAlN涂层的摩擦 Thin Solid Films, 2001, 398: 391–396.
系数达到最小值0.3,并且随着涂层中的Ag含量的上 [ 9 ] Endrino J L, Nainaparampil J J, Krzanowski J E. Microstructure and
升摩擦系数随之增大. 200 ℃时,掺Ag涂层的摩擦系 vacuum tribology of TiC –Ag composite coatings deposited by
数、磨损率均低于TiAlN涂层. 此外,由于此时的磨损 magnetron sputtering-pulsed laser deposition[J]. Surface and
Coatings Technology, 2002, 157(1): 95–101. doi: 10.1016/S0257-
机理为磨粒磨损,所以三种涂层的磨损率均达到最大
8972(02)00138-X.
值. 400 ℃时,两种TiAlAgN涂层的摩擦学性能均优于
[10] Bushroa A R, Masjuki H H, Muhamad M R, et al. Optimized scratch
TiAlN涂层,摩擦系数分别0.45和0.40左右,磨损率分
adhesion for TiSiN coatings deposited by a combination of DC and
3
别为0.020 2×10 和0.017 3×10 mm /(Nm). 600 ℃固 RF sputtering[J]. Surface and Coatings Technology, 2011, 206(7):
−3
−3
体润滑剂Ag已经失去了润滑效果,参与减磨的主要为 1837–1844. doi: 10.1016/j.surfcoat.2011.07.048.
Al O 和TiO ,所以此时的摩擦系数、磨损率均有所增 [11] Chen En. Tribological properties of TiC, Ag, Si and structure
3
2
2
加,并且Ag含量越高涂层的磨损率越大. 总的来说,固 modified TiAlN coatings[D]. Nanchang Hangkong University,
2017(in Chinese) [陈恩. TiC及Ag、Si结构改性的TiAlN涂层摩擦
体润滑剂Ag的掺入能够明显提高TiAlN涂层的耐
性能研究[D]. 南昌航空大学, 2017].
磨性.
[12] Perea D, Bejarano G. Development and characterization of TiAlN
c. 三种涂层的硬度分别为HV 2 049.4、HV 1 672.9 (Ag, Cu) nanocomposite coatings deposited by DC magnetron
0.2
0.2
和HV 1 398.5,与Ag的含量成反比. 所以当涂层中的 sputtering for tribological applications[J]. Surface and Coatings
0.2
Ag含量增加时,涂层的硬度及结合力均降低. Technology, 2020, 381: 125095. doi: 10.1016/j.surfcoat.2019.125095.
[13] Dang C Q, Li J L, Wang Y, et al. Influence of Ag contents on
参 考 文 献
structure and tribological properties of TiSiN-Ag nanocomposite
[ 1 ] Vennemann A, Stock H R, Kohlscheen J, et al. Oxidation resistance coatings on Ti –6Al –4V[J]. Applied Surface Science, 2017, 394:
of titanium –aluminium –silicon nitride coatings[J]. Surface and 613–624. doi: 10.1016/j.apsusc.2016.10.126.
Coatings Technology, 2003, 174-175: 408–415. doi: 10.1016/S0257- [14] Mechanical industry standard of the people's Republic of China.
8972(03)00407-9. Scratch test method for adhesion of vapor deposited film to
[ 2 ] Jiang N, Shen Y G, Zhang H J, et al. Superhard nanocomposite substrate[S]. 1997(in Chinese) [中华人民共和国机械行业标准. 气
Ti –Al –Si –N films deposited by reactive unbalanced magnetron 相沉积薄膜与基体附着力的划痕试验法[S]. 1997].
sputtering[J]. Materials Science and Engineering B, 2006, 135(1): [15] Astm International C U. Standard test method for adhesion strength
1–9. doi: 10.1016/j.mseb.2006.06.043. and mechanical failure modes of ceramic coatings by quantitative
[ 3 ] Wang S, Chen K, Chen L, et al. Effect of Al and Si additions on single point scratch testing[S]. 2005.
microstructure and mechanical properties of TiN coatings[J]. Journal [16] Hu Min, Liu Ying, Lai Zhenquan, et al. Technological parameters
of Central South University of Technology, 2011, 18(2): 310–313. and electrical property of TiN thin films grown processing by
doi: 10.1007/s11771-011-0696-4. magnetron sputtering[J]. Journal of Functional Materials, 2009,
[ 4 ] Kim S K, Van Le V. Cathodic arc plasma deposited TiAlSiN thin 40(2): 222–225 (in Chinese) [胡敏, 刘莹, 赖珍荃. 磁控溅射TiN薄
films using an Al-15 at.% Si cathode[J]. Thin Solid Films, 2010, 膜的工艺及电学性能研究[J]. 功能材料, 2009, 40(2): 222–225].
518(24): 7483–7486. doi: 10.1016/j.tsf.2010.05.029. doi: 10.3321/j.issn:1001-9731.2009.02.013.
[ 5 ] Xie Z, Wang L, Wang X, et al. Influence of Si content on structure [17] Tau C N, Koh E S, Akari K. Macroparticles on TiN films prepared
and mechanical properties of TiAlSiN coatings deposited by multi- by the arc ion plating process[J]. Surface and Coatings Technology,
plasma immersion ion implantation and deposition[J]. Transactions 1990, 43: 324–335.
of Nonferrous Metals Society of China, 2011, 21: s476–s482. doi: [18] Zeng Peng, Hu Shejun, Xie Guangrong, et al. Influence of pulse bias
10.1016/S1003-6326(11)61628-2. voltage on microstructure and properties of TiN films deposited by
[ 6 ] Chang C, Lee J, Tseng M. Microstructure, corrosion and tribological vacuum arc[J]. Transactions of Materials and Heat Treatment, 2001,
behaviors of TiAlSiN coatings deposited by cathodic arc plasma 22(3): 62–66 (in Chinese) [曾鹏, 胡社军, 谢光荣, 等. 脉冲偏压对
deposition[J]. Thin Solid Films, 2009, 517(17): 5231–5236. doi: 真空电弧沉积TiN薄膜组织与性能的影响[J]. 材料热处理学报,