Page 90 - 《摩擦学学报》2020年第5期
P. 90

第 5 期                      王泽勇, 等: 微量Ag元素对TiAlN涂层摩擦学性能的影响                                    645

            TiAlN及不同Ag含量的TiAlAgN涂层. 三种涂层的晶                         10.1016/j.tsf.2009.03.082.
            粒均以典型的柱状晶方式生长,厚度分别为4.18、                           [  7  ]  Yu  D,  Wang  C,  Cheng  X,  et  al.  Microstructure  and  properties  of
                                                                   TiAlSiN coatings prepared by hybrid PVD technology[J]. Thin Solid
            5.31和4.69 μm. XRD的检测结果表明固体润滑剂Ag
                                                                   Films, 2009, 517(17): 4950–4955. doi: 10.1016/j.tsf.2009.03.091.
            的掺入能够细化晶粒,从而使涂层变得更加致密.
                                                               [  8  ]  Carvalho  S,  Rebouta  L,  Cavaleiro  A,  et  al.  Microstructure  and
                b. 三种涂层在不同温度下的磨损机理均以黏着
                                                                   mechanical properties of nanocomposite (Ti, Si, Al) N coatings[J].
            磨损和磨粒磨损为主. 室温条件下TiAlN涂层的摩擦                             Thin Solid Films, 2001, 398: 391–396.
            系数达到最小值0.3,并且随着涂层中的Ag含量的上                          [  9  ]  Endrino J L, Nainaparampil J J, Krzanowski J E. Microstructure and
            升摩擦系数随之增大. 200 ℃时,掺Ag涂层的摩擦系                            vacuum  tribology  of  TiC –Ag  composite  coatings  deposited  by

            数、磨损率均低于TiAlN涂层. 此外,由于此时的磨损                            magnetron  sputtering-pulsed  laser  deposition[J].  Surface  and
                                                                   Coatings  Technology,  2002,  157(1):  95–101.  doi:  10.1016/S0257-
            机理为磨粒磨损,所以三种涂层的磨损率均达到最大
                                                                   8972(02)00138-X.
            值. 400 ℃时,两种TiAlAgN涂层的摩擦学性能均优于
                                                               [10]  Bushroa A R, Masjuki H H, Muhamad M R, et al. Optimized scratch
            TiAlN涂层,摩擦系数分别0.45和0.40左右,磨损率分
                                                                   adhesion for TiSiN coatings deposited by a combination of DC and
                                            3
            别为0.020 2×10 和0.017 3×10  mm /(Nm). 600 ℃固             RF  sputtering[J].  Surface  and  Coatings  Technology,  2011,  206(7):
                          −3
                                       −3
            体润滑剂Ag已经失去了润滑效果,参与减磨的主要为                               1837–1844. doi: 10.1016/j.surfcoat.2011.07.048.
            Al O 和TiO ,所以此时的摩擦系数、磨损率均有所增                       [11]  Chen  En.  Tribological  properties  of  TiC,  Ag,  Si  and  structure
                 3
                       2
              2
            加,并且Ag含量越高涂层的磨损率越大. 总的来说,固                             modified  TiAlN  coatings[D].  Nanchang  Hangkong  University,
                                                                   2017(in Chinese) [陈恩. TiC及Ag、Si结构改性的TiAlN涂层摩擦
            体润滑剂Ag的掺入能够明显提高TiAlN涂层的耐
                                                                   性能研究[D]. 南昌航空大学, 2017].
            磨性.
                                                               [12]  Perea  D,  Bejarano  G.  Development  and  characterization  of  TiAlN
                c. 三种涂层的硬度分别为HV 2 049.4、HV 1 672.9                 (Ag,  Cu)  nanocomposite  coatings  deposited  by  DC  magnetron
                                                   0.2
                                       0.2
            和HV 1 398.5,与Ag的含量成反比. 所以当涂层中的                         sputtering  for  tribological  applications[J].  Surface  and  Coatings
                 0.2
            Ag含量增加时,涂层的硬度及结合力均降低.                                  Technology, 2020, 381: 125095. doi: 10.1016/j.surfcoat.2019.125095.
                                                               [13]  Dang  C  Q,  Li  J  L,  Wang  Y,  et  al.  Influence  of  Ag  contents  on
            参 考 文 献
                                                                   structure  and  tribological  properties  of  TiSiN-Ag  nanocomposite
            [  1  ]  Vennemann A, Stock H R, Kohlscheen J, et al. Oxidation resistance  coatings  on  Ti –6Al –4V[J].  Applied  Surface  Science,  2017,  394:
                 of  titanium –aluminium –silicon  nitride  coatings[J].  Surface  and  613–624. doi: 10.1016/j.apsusc.2016.10.126.
                 Coatings Technology, 2003, 174-175: 408–415. doi: 10.1016/S0257-  [14]  Mechanical  industry  standard  of  the  people's  Republic  of  China.
                 8972(03)00407-9.                                  Scratch  test  method  for  adhesion  of  vapor  deposited  film  to
            [  2  ]  Jiang  N,  Shen  Y  G,  Zhang  H  J,  et  al.  Superhard  nanocomposite  substrate[S]. 1997(in Chinese) [中华人民共和国机械行业标准. 气
                 Ti –Al –Si –N  films  deposited  by  reactive  unbalanced  magnetron  相沉积薄膜与基体附着力的划痕试验法[S]. 1997].
                 sputtering[J].  Materials  Science  and  Engineering  B,  2006,  135(1):  [15]  Astm International C U. Standard test method for adhesion strength
                 1–9. doi: 10.1016/j.mseb.2006.06.043.             and  mechanical  failure  modes  of  ceramic  coatings  by  quantitative
            [  3  ]  Wang S, Chen K, Chen L, et al. Effect of Al and Si additions on  single point scratch testing[S]. 2005.
                 microstructure and mechanical properties of TiN coatings[J]. Journal  [16]  Hu Min, Liu Ying, Lai Zhenquan, et al. Technological parameters
                 of Central South University of Technology, 2011, 18(2): 310–313.  and  electrical  property  of  TiN  thin  films  grown  processing  by
                 doi: 10.1007/s11771-011-0696-4.                   magnetron  sputtering[J].  Journal  of  Functional  Materials,  2009,
            [  4  ]  Kim S K, Van Le V. Cathodic arc plasma deposited TiAlSiN thin  40(2): 222–225 (in Chinese) [胡敏, 刘莹, 赖珍荃. 磁控溅射TiN薄
                 films  using  an  Al-15  at.%  Si  cathode[J].  Thin  Solid  Films,  2010,  膜的工艺及电学性能研究[J]. 功能材料, 2009, 40(2): 222–225].
                 518(24): 7483–7486. doi: 10.1016/j.tsf.2010.05.029.  doi: 10.3321/j.issn:1001-9731.2009.02.013.
            [  5  ]  Xie Z, Wang L, Wang X, et al. Influence of Si content on structure  [17]  Tau C N, Koh E S, Akari K. Macroparticles on TiN films prepared
                 and mechanical properties of TiAlSiN coatings deposited by multi-  by the arc ion plating process[J]. Surface and Coatings Technology,
                 plasma immersion ion implantation and deposition[J]. Transactions  1990, 43: 324–335.
                 of Nonferrous Metals Society of China, 2011, 21: s476–s482. doi:  [18]  Zeng Peng, Hu Shejun, Xie Guangrong, et al. Influence of pulse bias
                 10.1016/S1003-6326(11)61628-2.                    voltage on microstructure and properties of TiN films deposited by
            [  6  ]  Chang C, Lee J, Tseng M. Microstructure, corrosion and tribological  vacuum arc[J]. Transactions of Materials and Heat Treatment, 2001,
                 behaviors  of  TiAlSiN  coatings  deposited  by  cathodic  arc  plasma  22(3): 62–66 (in Chinese) [曾鹏, 胡社军, 谢光荣, 等. 脉冲偏压对
                 deposition[J].  Thin  Solid  Films,  2009,  517(17):  5231–5236.  doi:  真空电弧沉积TiN薄膜组织与性能的影响[J]. 材料热处理学报,
   85   86   87   88   89   90   91   92   93   94   95