Page 5 - 《摩擦学学报》2020年第4期
P. 5

第 40 卷     第 4 期                        摩  擦  学  学  报                                  Vol 40   No 4
            2020  年 7  月                                 Tribology                                    Jul, 2020

            DOI: 10.16078/j.tribology.2019195



                       Inconel 718镍基超合金的空蚀行为研究




                                                           3*
                                                   1
                                 1
                                                                            2
                                                                                     2
                                         1,2
                                                                    2
                         陈天骅 , 李  珍 , 杜三明 , 陆  龙 , 尉含笑 , 王  琦 , 杨克禧 , 张永振                     1*
                          (1. 河南科技大学 高端轴承摩擦学技术与应用国家地方联合工程实验室,河南 洛阳 471023;
                                           2. 兰州文理学院 化工学院,甘肃 兰州 730000;
                                              3. 兰州工业研究院,甘肃 兰州 730050)
                摘   要: 采用超声振动空蚀试验机对Inconel 718镍基超合金与316L不锈钢进行空蚀磨损研究. 通过扫描电子显微镜
                (SEM)、场发射电镜(FESEM)以及高分辨X射线衍射仪对测试样品空蚀磨损表面形貌、微观结构演变和物相进行观
                察及分析. 结果表明:Inconel 718表现出更优异的抗空蚀磨损性能,其空蚀600 min累计质量损失约为316L的1/3,空
                蚀孕育期时长为316L不锈钢的2倍左右. 在空蚀孕育期,Inconel 718空蚀损伤首先发生在晶界、孪晶界等界面处,且
                并未出现明显的塑性变形. 316L在此期间呈现较为明显的塑性变形,空蚀表面起伏波动显著. 在空蚀加速期,
                Inconel 718质量损失的显著提升是由于空蚀表面微裂纹的扩展导致材料逐渐剥落引起的,316L则是由于空蚀表面
                大量凹坑的不断形成与合并导致质量损失的增加. Inconel 718空蚀120 min后,观察到空蚀磨损表面有明显的形变
                孪晶,且与空蚀前的金相形貌相比,形变孪晶有明显增多的趋势.
                关键词: Inconel 718镍基超合金; 累计质量损失; 空蚀磨损; 孕育期; 形变孪晶
                中图分类号: TH117.3                  文献标志码: A                   文章编号: 1004-0595(2020)04–0415–09


                    Investigation of the Cavitation Erosion Behavior of Inconel

                                         718 Nickel-based Superalloy


                                            1        1,2          1         3*           2
                               CHEN Tianhua , LI Zhen , DU Sanming , LU Long , YU Hanxiao ,
                                                              2
                                                 2
                                        WANG Qi , YANG Kexi , ZHANG Yongzhen    1*
                    (1. National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and
                                             Technology, Henan Luoyang 471023, China
                      2. School of Chemical Engineering, Lanzhou University of Arts and Science, Gansu Lanzhou 730000, China
                                  3. Lanzhou Institute of Industry Research, Gansu Lanzhou 730050, China)
                 Abstract: The cavitation erosion behavior of Inconel 718 nickel-based superalloy and 316L stainless steel were
                 investigated using an ultrasonic vibration apparatus. The eroded surface, microstructure evolution and phase analysis
                 were also observed and explored through scanning electron microscopy, cold field emission scanning microscopy and
                 high-resolution X-ray diffractometer. The results show that Inconel 718 had excellent cavitation erosion resistance, its
                 cumulative mass loss in 600 min and incubation time was about 1/3 and 2 times than that of 316L, respectively. At
                 incubation period, the eroded region of Inconel 718 mainly located on the grain boundary, twin boundary and other
                 interfaces. In contrast, 316L behaved marked plastic deformation which was characterized by the surface fluctuation.
                 During the acceleration period, it was noted that the notable increase of mass loss about Inconel 718 was caused by the
                 gradual spalling of material with propagation of microcracks on cavitation surfaces. At the same time, the remarkable


            Received 21 October 2019, revised 19 February 2020, accepted 28 February 2020, available online 28 July 2020.
            *Corresponding author. E-mail: lulong522522@163.com; E-mail: yzzhang@haust.edu.cn, Tel: +86-379-64231003.
            The project was supported by the National Natural Science Foundation of China (51705136) and the Innovation Ability Promotion
            Project of Institutions of Higher Learning of Gansu Province (2019A-155).
            国家自然科学基金项目(51705136)和甘肃省高等学校创新能力提升项目(2019A-155)资助.
   1   2   3   4   5   6   7   8   9   10