Page 172 - 《高原气象》2025年第3期
P. 172
高 原 气 象 44 卷
730
0291. 1. Panziera L, Germann U, 2010. The relation between airflow and oro‐
Jing X, Geerts B, Wang Y, et al, 2019. Ambient factors controlling graphic precipitation on the southern side of the Alps as revealed
the wintertime precipitation distribution across mountain ranges by weather radar[J]. Quarterly Journal of the Royal Meteorologi‐
in the interior western United States. Part II: Changes in oro‐ cal Society, 136: 222-238. DOI: 10. 1002/qj. 544.
graphic precipitation distribution in a pseudo-global warming sim‐ Rasmussen K L, Houze R A, 2011. Orogenic convection in subtropi‐
ulation[J]. Journal of Applied Meteorology and Climatology, 58 cal South America as seen by the TRMM satellite[J]. Monthly
(4): 695-715. DOI: 10. 1175/JAMC-D-18-0173. 1. Weather Review, 139(8): 2399-2420. DOI: 10. 1175/MWR-D-
Jin L, Li Z, He Q, et al, 2016. Observation and simulation of near- 10-05006. 1.
surface wind and its variation with topography in Urumqi, West Romatschke U, Houze R A, 2010. Extreme summer convection in
China[J]. Journal of Meteorological Research, 30: 961-982. South America[J]. Journal of Climate, 23(14): 3761-3791.
DOI: 10. 1007/s13351-016- 6012-3. DOI: 10. 1175/2010JCLI3465. 1.
Kumar S, Bhat G S, 2017. Vertical structure of orographic precipitat‐ Rotunno R, Houze R A, 2007. Lessons on orographic precipitation
ing clouds observed over South Asia during summer monsoon sea‐ from the Mesoscale Alpine Program me[J]. Quarterly Journal of
son[J]. Journal of Earth System Science, 126: 114. DOI: 10. the Royal Meteorological Society, 133(625): 811-830. DOI:
1007/s12040-017-0897-9. 10. 1002/qj. 67.
Le M, Chandrasekar V, 2019. Ground validation of surface snowfall Soderholm B, Ronalds B, Kirshbaum D J, 2014. The Evolution of
algorithm in GPM dual-frequency precipitation radar[J]. Journal Convective Storms Initiated by an Isolated Mountain Ridge[J].
of Atmospheric and Oceanic Technology, 36(4): 607-619. Monthly Weather Review, 142(4): 1430-1451. DOI: 10. 1175/
DOI: 10. 1175/JTECH-D-18-0098. 1. MWR-D-13-00280. 1.
Li J, Chen T, Li N, 2017. Diurnal variation of summer precipitation Veals P G, Steenburgh W J, Nakai S, et al, 2019. Factors affecting
across the central Tian Shan Mountains[J]. Journal of Applied the inland and orographic enhancement of Sea-Effect snowfall in
Meteorology and Climatology, 56(6): 1537-1550. DOI: 10. the Hokuriku Region of Japan[J]. Monthly Weather Review, 147
1175/JAMC-D-16-0265. 1. (9): 3121-3143. DOI: 10. 1175/MWR-D-19-0007. 1.
Li L L, Li J, Yu R C, 2020. Characteristics of summer regional rain‐ Whiteman C D, Zhong S, Bian X, et al, 2000. Boundary layer evolu‐
fall events over Ili River Valley in Northwest China[J]. Atmo‐ tion and regional-scale diurnal circulations over the and Mexican
spheric Research, 243: 104996. DOI: 10. 1016/j. atmosres. 2020. plateau[J]. Journal of Geophysical Research: Atmospheres, 105
104996. (D8): 10081-10102. DOI: 10. 1029/2000JD900039.
Li G P, Yu Z B, Wang W G, et al, 2021. Analysis of the spatial distri‐ Yuter S E, Houze R A, 1995. Three‐dimensional kinematic and micro‐
bution of precipitation and topography with GPM data in the Ti‐ physical evolution of Florida cumulonimbus. Part II: Frequency
betan Plateau[J]. Atmospheric Research, 247: 105259. DOI: distributions of vertical velocity, reflectivity, and differential refl
10. 1016/j. atmosres. 2020. 105259. ectivity[J]. Monthly Weather Review, 123(7): 1941-1963.
Lu C, Ye J, Jian F, et al, 2021. Assessment of GPM IMERG satellite DOI: 10. 1175/1520-0493(1995)123<19 41: TDKAME>2. 0.
precipitation estimation under complex climatic and topographic CO; 2.
conditions[J]. Atmosphere, 12(6): 780. DOI: 10. 3390/at‐ Zhang A Q, Fu Y F, Chen Y L, et al, 2018. Impact of the surface
mos12060780. wind flow on precipitation characteristics over the southern Hima‐
Lu X Y, Li J, Liu Y, et al, 2023. Quantitative precipitation estima‐ layas: GPM observations[J]. Atmospheric Research, 202: 10-
tion in the Tianshan Mountains based on machine learning[J]. Re‐ 22. DOI: 10. 1016/j. atmosres. 2017. 11. 001.
mote Sensing, 15(16): 3962. DOI: 10. 3390/rs15163962. Zwiebel J, Baelen J V, Anquetin S, et al, 2016. Impacts of orography
Morales A, Posselt D J, Morrison H, 2021. Which combinations of and rain intensity on rainfall structure. The case of the HyMeX
environmental conditions and microphysical parameter values pro‐ IOP7a event[J]. Quarterly Journal of the Royal Meteorological
duce a given orographic precipitation distribution?[J]. Atmo‐ Society, 142: 310-319. DOI: 10. 1002/qj. 2679.
spheric Sciences, 78(2): 619-638. DOI: 10. 1175/jas-d-20- 黄美元, 洪延超, 1984. 在梅雨锋云系内层状云回波结构及其降水
0142. 1. 的 不 均 匀 性[J]. 气 象 学 报(1): 80-87. DOI: 10. 11676/
Neiman P J, Ralph F M, White A B, et al, 2002. The statistical rela‐ qxxb1984. 008. Huang M Y, Hong Y C, 1984. Heterogeneity of
tionship between upslope flow and rainfall in California's coastal layered cloud echo structure and precipitation within the Meiyu
mountains: observations during CALJET[J]. Monthly Weather front cloud system[J]. Acta Meteorologica sinica (1): 80-87.
Review, 130(6): 1468-1492. DOI: 10. 1175/1520-0493(2002) DOI: 10. 11676/qxxb1984. 008.
130<1468: TSRBUF>2. 0. CO; 2. 刘艳霞, 文军, 谢晓林, 2024. 青藏高原中东部和四川盆地的夏季
Pan X, Fu Y F, Yang S, et al, 2021. Diurnal variations of precipita‐ 雨滴谱对比分析研究[J]. 高原气象, 43(1): 28-41. DOI: 10.
tion over the steep slopes of the Himalayas observed by TRMM 7522/j. issn. 1000-0534. 2023. 00033. Liu Y X, Wen J, Xie X
PR and VIRS[J]. Advances in Atmospheric Sciences, 38: 641- L, 2024. Comparative analysis of summer raindrop spectrum in
660. DOI: 10. 1007/s00376-020-0246-9. the central and eastern part of the Qinghai-Tibet Plateau and the