Page 172 - 《高原气象》2025年第3期
P. 172

高     原      气     象                                 44 卷
              730
                 0291. 1.                                       Panziera L, Germann U, 2010. The relation between airflow and oro‐
             Jing X, Geerts B, Wang Y, et al, 2019. Ambient factors controlling   graphic precipitation on the southern side of the Alps as revealed
                 the  wintertime  precipitation  distribution  across  mountain  ranges   by weather radar[J]. Quarterly Journal of the Royal Meteorologi‐
                 in  the  interior  western  United  States. Part  II:  Changes  in  oro‐  cal Society, 136: 222-238. DOI: 10. 1002/qj. 544.
                 graphic precipitation distribution in a pseudo-global warming sim‐  Rasmussen K L, Houze R A, 2011. Orogenic convection in subtropi‐
                 ulation[J]. Journal of Applied Meteorology and Climatology, 58  cal  South America  as  seen  by  the  TRMM  satellite[J]. Monthly
                (4): 695-715. DOI: 10. 1175/JAMC-D-18-0173. 1.     Weather Review, 139(8): 2399-2420. DOI: 10. 1175/MWR-D-
             Jin L, Li Z, He Q, et al, 2016. Observation and simulation of near-  10-05006. 1.
                 surface wind and its variation with topography in Urumqi, West   Romatschke  U,  Houze  R  A,  2010. Extreme  summer  convection  in
                 China[J]. Journal  of  Meteorological  Research,  30:  961-982.  South  America[J]. Journal  of  Climate,  23(14):  3761-3791.
                 DOI: 10. 1007/s13351-016- 6012-3.                 DOI: 10. 1175/2010JCLI3465. 1.
             Kumar S, Bhat G S, 2017. Vertical structure of orographic precipitat‐  Rotunno  R,  Houze  R A,  2007. Lessons  on  orographic  precipitation
                 ing clouds observed over South Asia during summer monsoon sea‐  from the Mesoscale Alpine Program me[J]. Quarterly Journal of
                 son[J]. Journal  of  Earth  System  Science,  126:  114. DOI:  10.    the  Royal  Meteorological  Society,  133(625):  811-830. DOI:
                 1007/s12040-017-0897-9.                           10. 1002/qj. 67.
             Le M, Chandrasekar V, 2019. Ground validation of surface snowfall   Soderholm  B,  Ronalds  B,  Kirshbaum  D  J,  2014. The  Evolution  of
                 algorithm in GPM dual-frequency precipitation radar[J]. Journal   Convective Storms Initiated by an Isolated Mountain Ridge[J].
                 of  Atmospheric  and  Oceanic  Technology,  36(4):  607-619.  Monthly Weather Review, 142(4): 1430-1451. DOI: 10. 1175/
                 DOI: 10. 1175/JTECH-D-18-0098. 1.                 MWR-D-13-00280. 1.
             Li J, Chen T, Li N, 2017. Diurnal variation of summer precipitation   Veals P G, Steenburgh W J, Nakai S, et al, 2019. Factors affecting
                 across  the  central  Tian  Shan  Mountains[J]. Journal  of Applied   the inland and orographic enhancement of Sea-Effect snowfall in
                 Meteorology  and  Climatology,  56(6):  1537-1550. DOI:  10.    the Hokuriku Region of Japan[J]. Monthly Weather Review, 147
                 1175/JAMC-D-16-0265. 1.                          (9): 3121-3143. DOI: 10. 1175/MWR-D-19-0007. 1.
             Li L L, Li J, Yu R C, 2020. Characteristics of summer regional rain‐  Whiteman C D, Zhong S, Bian X, et al, 2000. Boundary layer evolu‐
                 fall  events  over  Ili  River  Valley  in  Northwest  China[J]. Atmo‐  tion and regional-scale diurnal circulations over the and Mexican
                 spheric Research, 243: 104996. DOI: 10. 1016/j. atmosres. 2020.     plateau[J]. Journal of Geophysical Research: Atmospheres, 105
                 104996.                                          (D8): 10081-10102. DOI: 10. 1029/2000JD900039.
             Li G P, Yu Z B, Wang W G, et al, 2021. Analysis of the spatial distri‐  Yuter S E, Houze R A, 1995. Three‐dimensional kinematic and micro‐
                 bution of precipitation and topography with GPM data in the Ti‐  physical  evolution  of  Florida  cumulonimbus. Part  II:  Frequency
                 betan  Plateau[J]. Atmospheric  Research,  247:  105259. DOI:   distributions of vertical velocity, reflectivity, and differential refl
                 10. 1016/j. atmosres. 2020. 105259.               ectivity[J]. Monthly  Weather  Review,  123(7):  1941-1963.
             Lu C, Ye J, Jian F, et al, 2021. Assessment of GPM IMERG satellite   DOI:  10. 1175/1520-0493(1995)123<19  41:  TDKAME>2. 0.
                 precipitation  estimation  under  complex  climatic  and  topographic   CO; 2.
                 conditions[J]. Atmosphere,  12(6):  780. DOI:  10. 3390/at‐  Zhang A Q, Fu Y F, Chen Y L, et al, 2018. Impact of the surface
                 mos12060780.                                      wind flow on precipitation characteristics over the southern Hima‐
             Lu X Y, Li J, Liu Y, et al, 2023. Quantitative precipitation estima‐  layas:  GPM  observations[J]. Atmospheric  Research,  202:  10-
                 tion in the Tianshan Mountains based on machine learning[J]. Re‐  22. DOI: 10. 1016/j. atmosres. 2017. 11. 001.
                 mote Sensing, 15(16): 3962. DOI: 10. 3390/rs15163962.  Zwiebel J, Baelen J V, Anquetin S, et al, 2016. Impacts of orography
             Morales A, Posselt D J, Morrison H, 2021. Which combinations of   and  rain  intensity  on  rainfall  structure. The  case  of  the  HyMeX
                 environmental conditions and microphysical parameter values pro‐  IOP7a  event[J]. Quarterly  Journal  of  the  Royal  Meteorological
                 duce  a  given  orographic  precipitation  distribution?[J]. Atmo‐  Society, 142: 310-319. DOI: 10. 1002/qj. 2679.
                 spheric  Sciences,  78(2):  619-638. DOI:  10. 1175/jas-d-20-  黄美元, 洪延超, 1984. 在梅雨锋云系内层状云回波结构及其降水
                 0142. 1.                                          的 不 均 匀 性[J]. 气 象 学 报(1):  80-87. DOI:  10. 11676/
             Neiman P J, Ralph F M, White A B, et al, 2002. The statistical rela‐  qxxb1984. 008. Huang M Y, Hong Y C, 1984. Heterogeneity of
                 tionship between upslope flow and rainfall in California's coastal   layered  cloud  echo  structure  and  precipitation  within  the  Meiyu
                 mountains:  observations  during  CALJET[J]. Monthly  Weather   front  cloud  system[J]. Acta  Meteorologica  sinica (1):  80-87.
                 Review, 130(6): 1468-1492. DOI: 10. 1175/1520-0493(2002)  DOI: 10. 11676/qxxb1984. 008.
                 130<1468: TSRBUF>2. 0. CO; 2.                  刘艳霞, 文军, 谢晓林, 2024. 青藏高原中东部和四川盆地的夏季
             Pan X, Fu Y F, Yang S, et al, 2021. Diurnal variations of precipita‐  雨滴谱对比分析研究[J]. 高原气象, 43(1): 28-41. DOI: 10.
                 tion over the steep slopes of the Himalayas observed by TRMM   7522/j. issn. 1000-0534. 2023. 00033. Liu Y  X,  Wen  J,  Xie  X
                 PR and VIRS[J]. Advances in Atmospheric Sciences, 38: 641-  L,  2024. Comparative  analysis  of  summer  raindrop  spectrum  in
                 660. DOI: 10. 1007/s00376-020-0246-9.             the central and eastern part of the Qinghai-Tibet Plateau and the
   167   168   169   170   171   172   173   174   175   176   177