Page 211 - 《高原气象》2023年第1期
P. 211
1 期 张 珊等:基于WRF-LES的崇礼复杂地形局地风场模拟研究 207
形坡度和阴影对模拟结果的影响。主要结论如下: large-eddy simulations of flow in a steep Alpine valley, Part I:
(1) 模拟的风向和风速空间分布和时间变化 Methodology, verification, and sensitivity studies[J]. Journal of
Applied Meteorology & Climatology, 45(1): 63-86.
特征与观测一致性较好, 在山谷和山沟区域, 模拟
Chow F K, Wekker S F J D, Snyder B J, 2013. Mountain weather re‐
和观测风场都呈现出明显的日变化特征, 在海拔较
search and forecasting[M]. Netherlands: Springer Netherlands.
高区域, 风场受系统风影响更大。海拔较高站点风 Crosman E T, Horel J D, 2017. Large-eddy simulations of a Salt Lake
向的误差比海拔相对较低站点风向的误差小。海 Valley cold-air pool[J]. Atmospheric Research, 193(1): 10-25.
拔较低站点在山谷风或上下坡风发展稳定时段风 Deardorff, 1972. Numerical investigation of neutral and unstable plan‐
向误差较小, 风向转换时段误差较大。各站风向绝 etary boundary layers[J]. Journal of Atmospheric Sciences, 29
-1
对误差在 10°~60°, 风速绝对误差在 0. 5~2 m·s 。 (1): 91-115.
Deardorff, 1980. Stratocumulus-capped mixed layers derived from a 3-
可以看出, WRF-LES 模式能够呈现出复杂地形下
dimensional model[J]. Boundary Layer Meteorological, 18(4):
局地风场的变化特征, 可作为研究山地环流的有效
495-527.
手段。 Gerber F, Besic N, Sharma V, et al, 2018. Spatial variability in snow
(2) 更新地形、 土地利用及 CLDAS 土壤湿度 precipitation and accumulation in COSMO-WRF simulations and
初始场对模拟结果都有一定程度改善。其中使用 radar estimations over complex terrain[J]. The Cryosphere, 12
CLDAS 土壤湿度作为初始场后风向和 2 m 气温的 (10): 3137-3160.
Goger B, Rotach M W, Gohm A, et al, 2018. The impact of three-di‐
改善效果最为明显, 风向绝对误差减小 4. 26°, 2 m
mensional effects on the simulation of turbulence kinetic energy
气温绝对误差减小 0. 84 ℃。更新土地利用对风速
in a major alpine valley[J]. Boundary Layer Meteorology, 168
-1
的改善效果最为明显, 绝对误差减小 0. 32 m·s 。 (4): 1-27.
使用 STRM1 地形数据, 以及考虑地形坡度和阴影 Iacono M J, Delamere J S, Mlawer E J, et al, 2008. Radiative forcing
对短波辐射的影响后风向和风速的模拟效果都有 by long-lived greenhouse gases: calculations with the AER radia‐
不同程度改善。 tive transfer models[J]. Journal of Geophysical Research Atmo‐
sphere, 113(D13): 1-8.
(3) CLDAS 土壤湿度较 ERA5 的土壤湿度明
Jiménez P A, Gonzálezrouco J F, Garcíabustamante E, 2010. Surface
显偏小, 较小的土壤湿度会使土壤具有低传导率或
wind regionalization over complex terrain: evaluation and analy‐
低热容量, 这种状态会导致地表温度在白天的升温 sis of a high-resolution WRF simulation[J]. Journal of Applied
幅度和夜间的降温幅度都增大, 较强幅度的白天增 Meteorology & Climatology, 49(2): 268-287.
温垂直高度可延伸至 700~900 m, 较强幅度的夜间 Kang S L, Lenschow D H, 2014. Temporal evolution of low-level
降温垂直高度位于 200 m 以下, 与此同时, 较小的 winds induced by two-dimensional mesoscale surface heat-flux
土壤湿度也会使白天 600~900 m 以下的低层风速增 heterogeneity[J]. Boundary Layer Meteorology, 151(3):
501-529.
大, 这些特征在山谷和山沟中更为明显。
Liu Y B, Warner T, Liu Y W, et al, 2011. Simultaneous nested mod‐
目前 CLDAS 提供的土壤湿度分辨率约 6 km,
eling from the synoptic scale to the LES scale for wind energy ap‐
对于百米级的复杂地形下风场模拟还远不够, 在以 plications[J]. Journal of Wind Engineering and Industrial Aerody‐
后的工作中需要通过其他手段(如高分辨率陆面模 namics, 99(4): 308-319.
式或水文模式)得到更为精细的土壤湿度来进一步 Liu Y J, Liu Y B, Hu F, et al, 2020. Simulation of flow fields in com‐
改善模拟结果。另外, 由于计算资源限制, 本研究 plex terrain with WRF-LES: sensitivity assessment of different
PBL treatments[J]. Journal of Applied Meteorology and Climatol‐
只选取了一次天气个例, 未来需要对不同天气形势
ogy, 59(9): 1481-1500.
下的个例进行模拟评估。
Megan H D, 2010. Soil moisture in complex terrain: quantifying ef‐
参考文献: fects on atmosphere boundary layer flow and providing improved
surface boundary conditions for mesoscale models[D]. Califor‐
Banta R M, Gannon R T, 1995. Influence of soil moisture on simula‐ nia: University of California.
tions of katabatic flow[J]. Theory and Applied Climatology, 52 Moeng C H, 1984. A large eddy simulation model for the study of
(1): 85-94. planetary boundary layer turbulence[J]. Journal of Atmospheric
Chen F, Dudhia J, 2001. Coupling an advanced land surface-hydrolo‐ Sciences, 41(13): 2052-2062.
gy model with the Penn State-NCAR MM5 modeling system. Part Moeng C H, Sullivan P P, 1994. A comparison of shear and buoyancy
I: Model implementation and sensitivity[J]. Monthly Weather driven planetary boundary layer flows[J]. Journal of Atmosphere
Review, 129(4): 569-585. Science, 51(7): 999-1022.
Chow F K, Street R L, Rotach M W, et al, 2006. High-resolution Noh Y, Cheon W G, Hong S Y, et al, 2003. Improvement of the K-