Page 211 - 《高原气象》2023年第1期
P. 211

1 期                    张   珊等:基于WRF-LES的崇礼复杂地形局地风场模拟研究                                     207
               形坡度和阴影对模拟结果的影响。主要结论如下:                               large-eddy  simulations  of  flow  in  a  steep Alpine  valley,  Part  I:
                  (1)  模拟的风向和风速空间分布和时间变化                            Methodology, verification, and sensitivity studies[J]. Journal of
                                                                    Applied Meteorology & Climatology, 45(1): 63-86.
               特征与观测一致性较好, 在山谷和山沟区域, 模拟
                                                                 Chow F K, Wekker S F J D, Snyder B J, 2013. Mountain weather re‐
               和观测风场都呈现出明显的日变化特征, 在海拔较
                                                                    search and forecasting[M]. Netherlands: Springer Netherlands.
               高区域, 风场受系统风影响更大。海拔较高站点风                           Crosman E T, Horel J D, 2017. Large-eddy simulations of a Salt Lake
               向的误差比海拔相对较低站点风向的误差小。海                                Valley cold-air pool[J]. Atmospheric Research, 193(1): 10-25.
               拔较低站点在山谷风或上下坡风发展稳定时段风                             Deardorff, 1972. Numerical investigation of neutral and unstable plan‐
               向误差较小, 风向转换时段误差较大。各站风向绝                              etary  boundary  layers[J]. Journal  of Atmospheric  Sciences,  29
                                                          -1
               对误差在 10°~60°, 风速绝对误差在 0. 5~2 m·s 。                   (1): 91-115.
                                                                 Deardorff, 1980. Stratocumulus-capped mixed layers derived from a 3-
               可以看出, WRF-LES 模式能够呈现出复杂地形下
                                                                    dimensional model[J]. Boundary Layer Meteorological, 18(4):
               局地风场的变化特征, 可作为研究山地环流的有效
                                                                    495-527.
               手段。                                               Gerber F, Besic N, Sharma V, et al, 2018. Spatial variability in snow
                  (2)  更新地形、 土地利用及 CLDAS 土壤湿度                       precipitation and accumulation in COSMO-WRF simulations and
               初始场对模拟结果都有一定程度改善。其中使用                                radar  estimations  over  complex  terrain[J]. The  Cryosphere,  12
               CLDAS 土壤湿度作为初始场后风向和 2 m 气温的                          (10): 3137-3160.
                                                                 Goger B, Rotach M W, Gohm A, et al, 2018. The impact of three-di‐
               改善效果最为明显, 风向绝对误差减小 4. 26°, 2 m
                                                                    mensional effects on the simulation of turbulence kinetic energy
               气温绝对误差减小 0. 84 ℃。更新土地利用对风速
                                                                    in  a  major  alpine  valley[J]. Boundary  Layer  Meteorology,  168
                                                          -1
               的改善效果最为明显, 绝对误差减小 0. 32 m·s 。                        (4): 1-27.
               使用 STRM1 地形数据, 以及考虑地形坡度和阴影                        Iacono M J, Delamere J S, Mlawer E J, et al, 2008. Radiative forcing
               对短波辐射的影响后风向和风速的模拟效果都有                                by long-lived greenhouse gases: calculations with the AER radia‐
               不同程度改善。                                              tive transfer models[J]. Journal of Geophysical Research Atmo‐
                                                                    sphere, 113(D13): 1-8.
                  (3)  CLDAS 土壤湿度较 ERA5 的土壤湿度明
                                                                 Jiménez P A, Gonzálezrouco J F, Garcíabustamante E, 2010. Surface
               显偏小, 较小的土壤湿度会使土壤具有低传导率或
                                                                    wind regionalization over complex terrain: evaluation and analy‐
               低热容量, 这种状态会导致地表温度在白天的升温                              sis  of  a  high-resolution WRF  simulation[J]. Journal  of Applied
               幅度和夜间的降温幅度都增大, 较强幅度的白天增                              Meteorology & Climatology, 49(2): 268-287.
               温垂直高度可延伸至 700~900 m, 较强幅度的夜间                      Kang  S  L,  Lenschow  D  H,  2014. Temporal  evolution  of  low-level
               降温垂直高度位于 200 m 以下, 与此同时, 较小的                         winds  induced  by  two-dimensional  mesoscale  surface  heat-flux
               土壤湿度也会使白天 600~900 m 以下的低层风速增                         heterogeneity[J]. Boundary  Layer  Meteorology,  151(3):
                                                                    501-529.
               大, 这些特征在山谷和山沟中更为明显。
                                                                 Liu Y B, Warner T, Liu Y W, et al, 2011. Simultaneous nested mod‐
                   目前 CLDAS 提供的土壤湿度分辨率约 6 km,
                                                                    eling from the synoptic scale to the LES scale for wind energy ap‐
               对于百米级的复杂地形下风场模拟还远不够, 在以                              plications[J]. Journal of Wind Engineering and Industrial Aerody‐
               后的工作中需要通过其他手段(如高分辨率陆面模                               namics, 99(4): 308-319.
               式或水文模式)得到更为精细的土壤湿度来进一步                            Liu Y J, Liu Y B, Hu F, et al, 2020. Simulation of flow fields in com‐
               改善模拟结果。另外, 由于计算资源限制, 本研究                             plex  terrain  with  WRF-LES:  sensitivity  assessment  of  different
                                                                    PBL treatments[J]. Journal of Applied Meteorology and Climatol‐
               只选取了一次天气个例, 未来需要对不同天气形势
                                                                    ogy, 59(9): 1481-1500.
               下的个例进行模拟评估。
                                                                 Megan H D, 2010. Soil moisture in complex terrain: quantifying ef‐
               参考文献:                                                fects on atmosphere boundary layer flow and providing improved
                                                                    surface  boundary  conditions  for  mesoscale  models[D]. Califor‐
               Banta R M, Gannon R T, 1995. Influence of soil moisture on simula‐  nia: University of California.
                  tions of katabatic flow[J]. Theory and Applied Climatology, 52  Moeng  C  H,  1984. A  large  eddy  simulation  model  for  the  study  of
                 (1): 85-94.                                        planetary  boundary  layer  turbulence[J]. Journal  of Atmospheric
               Chen F, Dudhia J, 2001. Coupling an advanced land surface-hydrolo‐  Sciences, 41(13): 2052-2062.
                  gy model with the Penn State-NCAR MM5 modeling system. Part   Moeng C H, Sullivan P P, 1994. A comparison of shear and buoyancy
                  I:  Model  implementation  and  sensitivity[J]. Monthly  Weather   driven planetary boundary layer flows[J]. Journal of Atmosphere
                  Review, 129(4): 569-585.                          Science, 51(7): 999-1022.
               Chow  F  K,  Street  R  L,  Rotach  M W,  et  al,  2006. High-resolution   Noh Y, Cheon W G, Hong S Y, et al, 2003. Improvement of the K-
   206   207   208   209   210   211   212   213   214   215   216