Page 152 - 《高原气象》2023年第1期
P. 152

高     原      气     象                                 42 卷
              148
             存在谱宽增大区域, 因此超级单体风暴高层具有强                            Istok M J, Doviak R J, 1986. Analysis of the relation between Dop‐
             湍流, 而且靠近下沉气流的地方湍流更强, 可能和                              pler spectral width and thunderstorm turbulence[J]. Journal of the
                                                                   Atmospheric Sciences, 43(20): 2199-2214.
             风的水平切变有关, 在中气旋向上延伸的方向上,
                                                                Kumjian M R, Mishra S, Giangrande S E, et al, 2016. Polarimetric ra‐
             可以理解为中气旋搅动大气到达云顶与环境风相
                                                                   dar and aircraft observations of Baggy bands during bright[J]. Jour‐
             互作用形成强湍流。                                             nal of Geophysical Research Atmospheres, 121(7): 3584-3607.
                 (4)  湍流强度和速度的切变强度密切有关,                         Kumjian M R, Ryzhkov A V, Melnikov V M, et al, 2010. Observations
             在超级单体内部速度切变强度最大的区域具有较                                 of  a  cyclic  supercell  with  a  Rapid-scan  super-dual-polarization
             强湍流, 中等强度的中气旋超级单体具有最大约                                WSR-88D[J]. Monthly Weather Review, 138(10): 3762-3786.
                                                                Kumjian M R, Ryzhkov A V, 2008. Polarimetric signatures in super‐
             10 m·s 的谱宽, Z 为 1 dB 之内, 回波强度超过                       cell thunderstorms[J]. Journal of Applied Meteorology & Clima‐
                    -1
                               DR
             35 dBZ, K 较大, 而强中气旋超级单体中气旋附近                          tology, 47(7): 1940-1961.
                       DP
                                       -1
             速 度 切 变 处 具 有 16. 5 m·s 谱 宽 , 对 应 Z 超 过            Lee  J T,  1977. Application  of  Doppler  radar  to  turbulence  measure‐
                                                     DR
                                                         -1
             1 dB, 属于 Z 柱上半部分, K 超过 0. 5 (°)·km ,                  ments  which  affect  aircraft[P]. Federal Aviation Administration
                                         DP
                         DR
             CC 减小到 0. 88。强中气旋超级单体内具有更强的                           Report, 127: 1939-1959.
                                                                Lothon M, Lenschow D H, Leon D, et al, 2010. Turbulence measure‐
             湍流, 上升气流高度更高, 从而能形成更大冰雹,
                                                                   ments  in  marine  stratocumulus  with  airborne  Doppler  radar[J].
             湍流强度的差异对云的微物理结构及降水结果的
                                                                   Quarterly  Journal  of  the  Royal  Meteorological  Society,  131
             差异有指示作用。                                             (609): 2063-2080.
                                                                Melnikov V M, Doviak R J, 2002. Spectrum widths from echo power
             参考文献:
                                                                   differences  reveal  meteorological  features[J]. Journal  of Atmo‐
                                                                   spheric & Oceanic Technology, 19(11): 1793-1810.
             Andra D L, 1997. The origin and evolution of the WSR-88D mesocy‐
                                                                Melnikov V M, Doviak R J, 2008. Turbulence and wind shear in lay‐
                 clone recognition nomogram[C]//28th Conference on Radar Me‐
                                                                   ers of large Doppler spectrum width in stratiform precipitation[J].
                 teorology,  Austin,  TX,  American  Meteorological  Society,
                                                                   Journal of Atmospheric & Oceanic Technology, 26(3): 430-443.
                 364-365.
                                                                Picca J C, Ryzhkov A V, 2012. A dual-wavelength polarimetric analy‐
             Bewster K A, Zrnić D S, 1986. Comparison of eddy dissipation rates
                                                                   sis  of  the  16  May  2010  Oklahoma  city  extreme  hailstorm[J].
                 from spatial spectra of Doppler velocities and Doppler spectrum
                                                                   Monthly Weather Review, 140(4): 1385-1403.
                 widths[J]. Journal  of  Atmospheric  &  Oceanic  Technology,  3
                                                                Ryzhkov A V, Kumjian M R, Ganson S M, et al, 2013. Polarimetric
                (3): 440-452.
             Cornman L B, Williams J, Meymaris G, et al, 2003. Verification of   Radar characteristics of melting hail. Part I: Theoretical simula‐
                 an  airborne  Doppler  radar  turbulence  detection  algorithm[C]//  tions  using  spectral  microphysical  modeling[J]. Journal  of Ap‐
                                                                   plied Meteorology & Climatology, 52(12): 2849-2870.
                 Process  sixth  international  symposium  on  tropospheric  profiling
                                                                Snvder J C, Bluestein H B, Dawson ll D T, et al, 2017. Simulations
                 needs  and  technologies,  Leipzig,  Germany,  German  Weather
                 Service, 9-11.                                    of  polarimetric,  X-band  radar  signatures  in  supercells. Part  II:
             Doswell III C A, 2001. Severe convective storms[M]. Boston: Ameri‐  Z   columns  and  rings  and  K   columns[J]. Journal  of Applied
                                                                                       dp
                                                                    DR
                 can Meteorological Society, 1-525.                Meteorology & Climatology, 56(7): 2001-2026.
             Doviak R J, 2013. 多普勒雷达与气象观测[M]. 北京: 气象出版社,        Snyder J C, Ryzhkov A V, Kumjian M R, et a1, 2015. A Z  column
                                                                                                       DR
                 291-353.                                          detection  algorithm  to  examine  convective  storm  updralts[J].
             Frisch A S, Lenschow D H, Fairall C W, 1995. Doppler radar mea‐  Weather and Forecasting, 30(6): 1819-1844.
                 surements of turbulence in marine stratiform cloud during ASTEX  曹俊武, 刘黎平, 2007. 双线偏振雷达判别降水粒子类型技术及其
                [J]. Journal of the Atmospheric Sciences, 52(16): 2800-2808.  检验[J]. 高原气象, 26(1): 116-127.
             Hall M P M, Cherry S M, Goddard J W F, et al, 1980. Rain drop siz‐  曹杨, 苏德斌, 周筠珺, 等, 2016. C 波段双线偏振多普勒雷达差分
                 es  and  rainfall  rate  measured  by  dual-polarization  radar[J]. Na‐  相位质量分析[J]. 高原气象, 35(2): 548-559. DOI: 10. 7522/
                 ture, 285(5762): 195-198.                         j. issn. 1000-0534. 2014. 00154.
             Hocking W K, Mu P K L, 1997. Upper and middle tropospheric kinet‐  刁秀广, 郭飞燕, 2021. 2019 年 8 月 16 日诸城超级单体风暴双偏振
                 ic  energy  dissipation  rates  from  measurements  of  Cn-Review  of   参量结构特征分析[J]. 气象学报, 79(2): 1-15.
                 theories,  in-situ  investigations,  and  experimental  studies  using   刁秀广, 杨传凤, 张骞, 等, 2021. 二次长寿命超级单体风暴参数与
                 the Buckland Park atmospheric radar in Australia[J]. Journal of   Z DR  柱演变特征分析[J]. 高原气象, 40(3): 580-589. DOI:
                 Atmospheric & Solar Terrestrial Physics, 59(14): 1779-1803.  10. 7522/j. issn. 1000-0534. 2020. 00034.
             Illingworth A J, Goddard J W F, Cherry S M, 1987. Polarization ra‐  刁秀广, 朱君鉴, 刘志红, 2009. 三次超级单体风暴雷达产品特征
                 dar studies of precipitation development in convective storms[J].  及气流结构差异性分析[J]. 气象学报, 67(1): 133-146.
                 Quarterly  Journal  of  the  Royal  Meteorological  Society,  113  黄琴, 魏鸣, 胡汉峰, 2018. 晴空回波的大气风温湿结构及双偏振
                (476): 469-489.                                    雷达参量分析[J]. 气象, 44(4): 526-537.
   147   148   149   150   151   152   153   154   155   156   157