Page 152 - 《高原气象》2023年第1期
P. 152
高 原 气 象 42 卷
148
存在谱宽增大区域, 因此超级单体风暴高层具有强 Istok M J, Doviak R J, 1986. Analysis of the relation between Dop‐
湍流, 而且靠近下沉气流的地方湍流更强, 可能和 pler spectral width and thunderstorm turbulence[J]. Journal of the
Atmospheric Sciences, 43(20): 2199-2214.
风的水平切变有关, 在中气旋向上延伸的方向上,
Kumjian M R, Mishra S, Giangrande S E, et al, 2016. Polarimetric ra‐
可以理解为中气旋搅动大气到达云顶与环境风相
dar and aircraft observations of Baggy bands during bright[J]. Jour‐
互作用形成强湍流。 nal of Geophysical Research Atmospheres, 121(7): 3584-3607.
(4) 湍流强度和速度的切变强度密切有关, Kumjian M R, Ryzhkov A V, Melnikov V M, et al, 2010. Observations
在超级单体内部速度切变强度最大的区域具有较 of a cyclic supercell with a Rapid-scan super-dual-polarization
强湍流, 中等强度的中气旋超级单体具有最大约 WSR-88D[J]. Monthly Weather Review, 138(10): 3762-3786.
Kumjian M R, Ryzhkov A V, 2008. Polarimetric signatures in super‐
10 m·s 的谱宽, Z 为 1 dB 之内, 回波强度超过 cell thunderstorms[J]. Journal of Applied Meteorology & Clima‐
-1
DR
35 dBZ, K 较大, 而强中气旋超级单体中气旋附近 tology, 47(7): 1940-1961.
DP
-1
速 度 切 变 处 具 有 16. 5 m·s 谱 宽 , 对 应 Z 超 过 Lee J T, 1977. Application of Doppler radar to turbulence measure‐
DR
-1
1 dB, 属于 Z 柱上半部分, K 超过 0. 5 (°)·km , ments which affect aircraft[P]. Federal Aviation Administration
DP
DR
CC 减小到 0. 88。强中气旋超级单体内具有更强的 Report, 127: 1939-1959.
Lothon M, Lenschow D H, Leon D, et al, 2010. Turbulence measure‐
湍流, 上升气流高度更高, 从而能形成更大冰雹,
ments in marine stratocumulus with airborne Doppler radar[J].
湍流强度的差异对云的微物理结构及降水结果的
Quarterly Journal of the Royal Meteorological Society, 131
差异有指示作用。 (609): 2063-2080.
Melnikov V M, Doviak R J, 2002. Spectrum widths from echo power
参考文献:
differences reveal meteorological features[J]. Journal of Atmo‐
spheric & Oceanic Technology, 19(11): 1793-1810.
Andra D L, 1997. The origin and evolution of the WSR-88D mesocy‐
Melnikov V M, Doviak R J, 2008. Turbulence and wind shear in lay‐
clone recognition nomogram[C]//28th Conference on Radar Me‐
ers of large Doppler spectrum width in stratiform precipitation[J].
teorology, Austin, TX, American Meteorological Society,
Journal of Atmospheric & Oceanic Technology, 26(3): 430-443.
364-365.
Picca J C, Ryzhkov A V, 2012. A dual-wavelength polarimetric analy‐
Bewster K A, Zrnić D S, 1986. Comparison of eddy dissipation rates
sis of the 16 May 2010 Oklahoma city extreme hailstorm[J].
from spatial spectra of Doppler velocities and Doppler spectrum
Monthly Weather Review, 140(4): 1385-1403.
widths[J]. Journal of Atmospheric & Oceanic Technology, 3
Ryzhkov A V, Kumjian M R, Ganson S M, et al, 2013. Polarimetric
(3): 440-452.
Cornman L B, Williams J, Meymaris G, et al, 2003. Verification of Radar characteristics of melting hail. Part I: Theoretical simula‐
an airborne Doppler radar turbulence detection algorithm[C]// tions using spectral microphysical modeling[J]. Journal of Ap‐
plied Meteorology & Climatology, 52(12): 2849-2870.
Process sixth international symposium on tropospheric profiling
Snvder J C, Bluestein H B, Dawson ll D T, et al, 2017. Simulations
needs and technologies, Leipzig, Germany, German Weather
Service, 9-11. of polarimetric, X-band radar signatures in supercells. Part II:
Doswell III C A, 2001. Severe convective storms[M]. Boston: Ameri‐ Z columns and rings and K columns[J]. Journal of Applied
dp
DR
can Meteorological Society, 1-525. Meteorology & Climatology, 56(7): 2001-2026.
Doviak R J, 2013. 多普勒雷达与气象观测[M]. 北京: 气象出版社, Snyder J C, Ryzhkov A V, Kumjian M R, et a1, 2015. A Z column
DR
291-353. detection algorithm to examine convective storm updralts[J].
Frisch A S, Lenschow D H, Fairall C W, 1995. Doppler radar mea‐ Weather and Forecasting, 30(6): 1819-1844.
surements of turbulence in marine stratiform cloud during ASTEX 曹俊武, 刘黎平, 2007. 双线偏振雷达判别降水粒子类型技术及其
[J]. Journal of the Atmospheric Sciences, 52(16): 2800-2808. 检验[J]. 高原气象, 26(1): 116-127.
Hall M P M, Cherry S M, Goddard J W F, et al, 1980. Rain drop siz‐ 曹杨, 苏德斌, 周筠珺, 等, 2016. C 波段双线偏振多普勒雷达差分
es and rainfall rate measured by dual-polarization radar[J]. Na‐ 相位质量分析[J]. 高原气象, 35(2): 548-559. DOI: 10. 7522/
ture, 285(5762): 195-198. j. issn. 1000-0534. 2014. 00154.
Hocking W K, Mu P K L, 1997. Upper and middle tropospheric kinet‐ 刁秀广, 郭飞燕, 2021. 2019 年 8 月 16 日诸城超级单体风暴双偏振
ic energy dissipation rates from measurements of Cn-Review of 参量结构特征分析[J]. 气象学报, 79(2): 1-15.
theories, in-situ investigations, and experimental studies using 刁秀广, 杨传凤, 张骞, 等, 2021. 二次长寿命超级单体风暴参数与
the Buckland Park atmospheric radar in Australia[J]. Journal of Z DR 柱演变特征分析[J]. 高原气象, 40(3): 580-589. DOI:
Atmospheric & Solar Terrestrial Physics, 59(14): 1779-1803. 10. 7522/j. issn. 1000-0534. 2020. 00034.
Illingworth A J, Goddard J W F, Cherry S M, 1987. Polarization ra‐ 刁秀广, 朱君鉴, 刘志红, 2009. 三次超级单体风暴雷达产品特征
dar studies of precipitation development in convective storms[J]. 及气流结构差异性分析[J]. 气象学报, 67(1): 133-146.
Quarterly Journal of the Royal Meteorological Society, 113 黄琴, 魏鸣, 胡汉峰, 2018. 晴空回波的大气风温湿结构及双偏振
(476): 469-489. 雷达参量分析[J]. 气象, 44(4): 526-537.