Page 227 - 《高原气象》2022年第1期
P. 227
1 期 陈得圆等:四川盆地西部一次典型连续夜雨的数值模拟 225
thermal forcing by the Tibetan Plateau on Asian Climate[J]. Jour‐ 敏感性的模拟研究[J]. 大气科学,33(2):241-250.
nal of Hydrometeorology,8(4):770-789. 吕炯,1942. 巴山夜雨[J]. 气象学报,1(1):36-53.
Yu R,Wang B,Zhou T,2004. Climate effects of the deep continental 钱永甫,周天军,1995. 有地形模式中气压梯度力误差扣除法[J].
stratus clouds generated by the Tibetan Plateau[J]. Journal of Cli‐ 高原气象,24(1):1-9.
mate,17(13):2702-2713. 冉令坤,楚艳丽,2009. 强降水过程中垂直螺旋度和散度通量及其
Yu R,Xu Y,Zhou T,et al,2007. Relation between rainfall duration 拓展形式的诊断分析[J]. 物理学报,58(11):8094-8106.
and diurnal cycle in the warm season precipitation over central 沈沛丰,张耀存,2011. 四川盆地夏季降水日变化的数值模拟[J].
eastern China[J]. Geophysical Research Letters, 34(13): 高原气象,30(4):860-868.
173-180. 吴迪,王澄海,何光碧,2016. 青藏高原地区夏季两次强降水过程
Yuan W,Yu R,Zhang M,et al,2012. Regimes of diurnal variation 中重力波特征分析[J]. 高原气象,35(4):854-864. DOI:10.
of summer rainfall over subtropical East Asia[J]. Journal of Cli‐ 7522/j. issn. 1000-0534. 2015. 00066.
mate,25(9):3307-3320. 徐裕华,王宗德,王明,等,1991. 西南气候[M]. 北京:气象出版
白爱娟,刘晓东,刘长海,2011. 青藏高原与四川盆地夏季降水日 社,298.
变化的对比分析[J]. 高原气象,30(4):852-859. 杨帅,陈斌,高守亭,2013. 水汽螺旋度和热力螺旋度在华北强“桑
段春锋,曹雯,缪启龙,等,2013. 中国夏季夜雨的空间分布特征 拿天”过程中的分析及应用[J]. 地球物理学报,56(7):2185-
[J]. 自然资源学报,28(11):1935-1944. 2194.
谷星月,马耀明,马伟强,等,2018. 青藏高原地表辐射通量的气候 于涵,张杰,刘诗梦,2019. 青藏高原地表非绝热加热模态及其与
特征分析[J]. 高原气象,37(6):1458-1469. DOI:10. 7522/j. 中国北方环流异常的联系[J]. 高原气象,38(2):237-252.
issn. 1000-0534. 2018. 00051. DOI:10. 7522/j. issn. 1000-0534. 2018. 00079.
李川,陈静,何光碧,2006. 青藏高原东侧陡峭地形对一次强降水 郁淑华,何光碧,1997. 青藏高原切变线对四川盆地西部突发性暴
天气过程的影响[J]. 高原气象,25(3):442-450. 雨影响的数值试验[J]. 高原气象,26(3):306-311.
李琴,杨帅,崔晓鹏,等,2016. 四川暴雨过程动力因子指示意义与 岳彩军,曹钰,李小凡,2014. 垂直螺旋度的拓展研究及应用[J]. 高
预报意义研究[J]. 大气科学,40(2):341-356. 原气象,33(5):1281-1288. DOI:10. 7522/j. issn. 1000-0534.
卢萍,宇如聪,周天军,2008. 2003年 8月“巴蜀夜雨”过程的模拟和 2013. 00115.
分析研究[J]. 气象学报,66(3):371-380. 赵玉春,王叶红,2010. 高原涡诱生西南涡特大暴雨成因的个例研
卢萍,宇如聪,周天军,2009. 四川盆地西部暴雨对初始水汽条件 究[J]. 高原气象,29(4):819-831.
Numerical Simulation of a Typical Continuous Night Rain
Processin the Western Sichuan Basin
CHEN Deyuan,WANG Lei,LI Xiehui,PEI Kunning
(College of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China)
Abstract:Used the mesoscale WRF model to study a continuous night rain processthat occurred in the western
Sichuan Basin from 15 to 17 July 2017,and explored the formation mechanism of the night rain process,espe‐
cially the local“valley wind”circulation. The main conclusions are as follows:(1)This weather process mainly
occurs in the background of the 500 hPa“North High South Low”circulation,which is conductive to the south‐
ward transport of cold air. The southerly airflow on the east side of the typhoon at 850 hPa and the southerly air‐
flow on the west side of the subtropical high are superimposed to from a conveyor belt,which is conducive to the
transportation of large amounts of water vapor and heat to the Sichuan Basin at low latitudes.(2)The“valley
wind”simulated by the WRF model is an important driving mechanism of the night rain process:during days,
the eastern slope of the Qinghai-Xizang Plateau is controlled by the“valley wind”while the eastern slope of the
Qinghai-Xizang Plateau is controlled by the“mountain wind”at night.(3)The three helicities can better explain
the relationship of the night precipitation formation and the "valley wind”.
Key words:Night rain;“mountain-valley breeze”;numerical simulation;western Sichuan Basin