Page 195 - 《爆炸与冲击》2025年第12期
P. 195

第 45 卷           孙    勇,等: 动态海缆抗多次冲击复合防护层设计及力学性能研究                             第 12 期

                    Engineering, 2023, 44(21): 62–69. DOI: 10.19554/j.cnki.1001-3563.2023.21.008.
               [14]   LINUL  E,  ŞERBAN  D  A,  MARSAVINA  L,  et  al.  Assessment  of  collapse  diagrams  of  rigid  polyurethane  foams  under
                    dynamic loading conditions [J]. Archives of Civil and Mechanical Engineering, 2017, 17(3): 457–466. DOI: 10.1016/j.acme.
                    2016.12.009.
               [15]   ELLIOTT  J  A,  WINDLE  A  H,  HOBDELL  J  R,  et  al.  In-situ  deformation  of  an  open-cell  flexible  polyurethane  foam
                    characterised by 3D computed microtomography [J]. Journal of Materials Science, 2002, 37(8): 1547–1555. DOI: 10.1023/A:
                    1014920902712.
               [16]   TAN  P  J,  HARRIGAN  J  J,  REID  S  R.  Inertia  effects  in  uniaxial  dynamic  compression  of  a  closed  cell  aluminium  alloy
                    foam [J]. Materials Science and Technology, 2002, 18(5): 480–488. DOI: 10.1179/026708302225002092.
               [17]   LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids [J]. Journal of
                    Cellular Plastics, 2006, 42(5): 371–392. DOI: 10.1177/0021955X06063519.
               [18]   SHIVAKUMAR  N  D,  DEB  A.  Dependence  of  the  mechanical  properties  of  rigid  PU  foam  on  density  [J].  Journal  of
                    Reinforced Plastics and Composites, 2022, 41(9/10): 355–363. DOI: 10.1177/07316844211051737.
               [19]   苏兴亚, 周伦, 敬霖, 等. 软质聚氨酯泡沫的动态压缩力学性能和本构模型 [J]. 爆炸与冲击, 2022, 42(9): 091410. DOI:
                    10.11883/bzycj-2022-0201.
                    SU X Y, ZHOU L, JIN L, et al. Dynamic compressive mechanical properties and constitutive model of soft polyurethane
                    foam [J]. Explosion and Shock Waves, 2022, 42(9): 091410. DOI: 10.11883/bzycj-2022-0201.
               [20]   DEL ROSSO S, IANNUCCI L. On the compressive response of polymeric cellular materials [J]. Materials, 2020, 13(2): 457.
                    DOI: 10.3390/ma13020457.
               [21]   张勇, 陈力, 陈荣俊, 等. 聚氨酯泡沫铝动力学性能实验及本构模型研究 [J]. 爆炸与冲击, 2014, 34(3): 373–378. DOI:
                    10.11883/1001-1455(2014)03-0373-06.
                    ZHANG Y, CHEN L, CHEN R J, et al. Dynamic mechanical property experiment and constitutive model establishment of
                    polyurethane foam aluminum [J]. Explosion and Shock Waves, 2014, 34(3): 373–378. DOI: 10.11883/1001-1455(2014)03-
                    0373-06.
               [22]   吴江, 王根伟, 李志强. 应变率与相对密度对聚氨酯泡沫压缩力学行为的影响 [J]. 科学技术与工程, 2015, 15(14):
                    102–105. DOI: 10.3969/j.issn.1671-1815.2015.14.019.
                    WU J, WANG G W, LI Z Q. Effect of strain rate and relative density on compressive mechanical behavior of polyurethane
                    foams [J]. Science Technology and Engineering, 2015, 15(14): 102–105. DOI: 10.3969/j.issn.1671-1815.2015.14.019.
               [23]   胡时胜, 王悟, 潘艺, 等. 泡沫材料的应变率效应 [J]. 爆炸与冲击, 2003, 23(1): 13–18. DOI: 10.11883/1001-1455(2003)01-
                    0013-6.
                    HU S S, WANG W, PAN Y, et al. Strain rate effect of foam materials [J]. Explosion and Shock Waves, 2003, 23(1): 13–18.
                    DOI: 10.11883/1001-1455(2003)01-0013-6.
               [24]   范志庚, 陈常青, 万强. 泡沫铝率相关性能的有限元模拟 [J]. 爆炸与冲击, 2014, 34(6): 742–747. DOI: 10.11883/1001-
                    1455(2014)06-0742-06.
                    FAN Z G, CHEN C Q, WAN Q. Finite element simulation on the rate-dependent properties of aluminum foams [J]. Explosion
                    and Shock Waves, 2014, 34(6): 742–747. DOI: 10.11883/1001-1455(2014)06-0742-06.
               [25]   BOON  P  C,  ANATOLI  K,  ALEKSANDR  K,  et  al.  Enhancing  dynamic  impact  performance  and  cushioning  of  EVA
                    copolymer foams with thermoplastic elastomers [J]. Materials Today Communications, 2024, 38: 107888. DOI: 10.1016/j.
                    mtcomm.2023.107888.
               [26]   ZHU P, MEUCHELBÖCK J, QIU C, et al. Fatigue behaviors and cellular damages of bead-welded foam of poly(ether-b-
                    amide)  under  cyclic  compression  [J].  International  Journal  of  Fatigue,  2025,  194:  108841.  DOI:  10.1016/j.ijfatigue.2025.
                    108841.
               [27]   杨宝. SHPB  实验中泡沫铝细观结构变形特征与应变率效应机理研究              [D]. 广州: 华南理工大学, 2012: 82–85.
                    YANG  B.  Study  on  deformation  characteristics  and  strain  rate  effect  mechanism  of  meso-structure  of  aluminum  foam  in
                    SHPB experiment [D]. Guangzhou : South China University of Technology, 2012: 82–85.
               [28]   BASTAWROS  A  F,  EVANS  A  G.  Deformation  heterogeneity  in  cellular  Al  alloys  [J].  Advanced  Engineering  Materials,
                    2000, 2(4): 210–214. DOI: 10.1002/(SICI)1527-2648(200004)2:4<210::AID-ADEM210>3.0.CO;2-Z.
                                                                                          (责任编辑    王易难)



                                                         125102-16
   190   191   192   193   194   195   196