Page 195 - 《爆炸与冲击》2025年第12期
P. 195
第 45 卷 孙 勇,等: 动态海缆抗多次冲击复合防护层设计及力学性能研究 第 12 期
Engineering, 2023, 44(21): 62–69. DOI: 10.19554/j.cnki.1001-3563.2023.21.008.
[14] LINUL E, ŞERBAN D A, MARSAVINA L, et al. Assessment of collapse diagrams of rigid polyurethane foams under
dynamic loading conditions [J]. Archives of Civil and Mechanical Engineering, 2017, 17(3): 457–466. DOI: 10.1016/j.acme.
2016.12.009.
[15] ELLIOTT J A, WINDLE A H, HOBDELL J R, et al. In-situ deformation of an open-cell flexible polyurethane foam
characterised by 3D computed microtomography [J]. Journal of Materials Science, 2002, 37(8): 1547–1555. DOI: 10.1023/A:
1014920902712.
[16] TAN P J, HARRIGAN J J, REID S R. Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy
foam [J]. Materials Science and Technology, 2002, 18(5): 480–488. DOI: 10.1179/026708302225002092.
[17] LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids [J]. Journal of
Cellular Plastics, 2006, 42(5): 371–392. DOI: 10.1177/0021955X06063519.
[18] SHIVAKUMAR N D, DEB A. Dependence of the mechanical properties of rigid PU foam on density [J]. Journal of
Reinforced Plastics and Composites, 2022, 41(9/10): 355–363. DOI: 10.1177/07316844211051737.
[19] 苏兴亚, 周伦, 敬霖, 等. 软质聚氨酯泡沫的动态压缩力学性能和本构模型 [J]. 爆炸与冲击, 2022, 42(9): 091410. DOI:
10.11883/bzycj-2022-0201.
SU X Y, ZHOU L, JIN L, et al. Dynamic compressive mechanical properties and constitutive model of soft polyurethane
foam [J]. Explosion and Shock Waves, 2022, 42(9): 091410. DOI: 10.11883/bzycj-2022-0201.
[20] DEL ROSSO S, IANNUCCI L. On the compressive response of polymeric cellular materials [J]. Materials, 2020, 13(2): 457.
DOI: 10.3390/ma13020457.
[21] 张勇, 陈力, 陈荣俊, 等. 聚氨酯泡沫铝动力学性能实验及本构模型研究 [J]. 爆炸与冲击, 2014, 34(3): 373–378. DOI:
10.11883/1001-1455(2014)03-0373-06.
ZHANG Y, CHEN L, CHEN R J, et al. Dynamic mechanical property experiment and constitutive model establishment of
polyurethane foam aluminum [J]. Explosion and Shock Waves, 2014, 34(3): 373–378. DOI: 10.11883/1001-1455(2014)03-
0373-06.
[22] 吴江, 王根伟, 李志强. 应变率与相对密度对聚氨酯泡沫压缩力学行为的影响 [J]. 科学技术与工程, 2015, 15(14):
102–105. DOI: 10.3969/j.issn.1671-1815.2015.14.019.
WU J, WANG G W, LI Z Q. Effect of strain rate and relative density on compressive mechanical behavior of polyurethane
foams [J]. Science Technology and Engineering, 2015, 15(14): 102–105. DOI: 10.3969/j.issn.1671-1815.2015.14.019.
[23] 胡时胜, 王悟, 潘艺, 等. 泡沫材料的应变率效应 [J]. 爆炸与冲击, 2003, 23(1): 13–18. DOI: 10.11883/1001-1455(2003)01-
0013-6.
HU S S, WANG W, PAN Y, et al. Strain rate effect of foam materials [J]. Explosion and Shock Waves, 2003, 23(1): 13–18.
DOI: 10.11883/1001-1455(2003)01-0013-6.
[24] 范志庚, 陈常青, 万强. 泡沫铝率相关性能的有限元模拟 [J]. 爆炸与冲击, 2014, 34(6): 742–747. DOI: 10.11883/1001-
1455(2014)06-0742-06.
FAN Z G, CHEN C Q, WAN Q. Finite element simulation on the rate-dependent properties of aluminum foams [J]. Explosion
and Shock Waves, 2014, 34(6): 742–747. DOI: 10.11883/1001-1455(2014)06-0742-06.
[25] BOON P C, ANATOLI K, ALEKSANDR K, et al. Enhancing dynamic impact performance and cushioning of EVA
copolymer foams with thermoplastic elastomers [J]. Materials Today Communications, 2024, 38: 107888. DOI: 10.1016/j.
mtcomm.2023.107888.
[26] ZHU P, MEUCHELBÖCK J, QIU C, et al. Fatigue behaviors and cellular damages of bead-welded foam of poly(ether-b-
amide) under cyclic compression [J]. International Journal of Fatigue, 2025, 194: 108841. DOI: 10.1016/j.ijfatigue.2025.
108841.
[27] 杨宝. SHPB 实验中泡沫铝细观结构变形特征与应变率效应机理研究 [D]. 广州: 华南理工大学, 2012: 82–85.
YANG B. Study on deformation characteristics and strain rate effect mechanism of meso-structure of aluminum foam in
SHPB experiment [D]. Guangzhou : South China University of Technology, 2012: 82–85.
[28] BASTAWROS A F, EVANS A G. Deformation heterogeneity in cellular Al alloys [J]. Advanced Engineering Materials,
2000, 2(4): 210–214. DOI: 10.1002/(SICI)1527-2648(200004)2:4<210::AID-ADEM210>3.0.CO;2-Z.
(责任编辑 王易难)
125102-16

