Page 194 - 《爆炸与冲击》2025年第12期
P. 194
第 45 卷 孙 勇,等: 动态海缆抗多次冲击复合防护层设计及力学性能研究 第 12 期
(3) 防护层有效结合了橡胶材料的快速回弹特性和 EVA 泡沫材料的高效回弹特性,进一步提高了
其在多次加载下的吸能稳定性。
参考文献:
[1] 林开泉, 王红霞, 刘红亮, 等. 海底光缆锚害的有限元分析 [J]. 电线电缆, 2010(6): 31–33, 44. DOI: 10.16105/j.cnki.dxdl.
2010.06.015.
LIN K Q, WANG H X, LIU H L, et al. Finite element analysis of anchorage damage of submarine optical cable [J]. Electic
Wire & Cable, 2010(6): 31–33, 44. DOI: 10.16105/j.cnki.dxdl.2010.06.015.
[2] 夏峰, 陈凯, 张永明. 海底电力电缆铠装结构机械强度分析及设计 [J]. 电线电缆, 2011(3): 8–11. DOI: 10.16105/j.cnki.
dxdl.2011.03.004.
XIA F, CHEN K, ZHANG Y M. Mechanical strength analysis and design of submarine power cable armored structure [J].
Electic Wire & Cable, 2011(3): 8–11. DOI: 10.16105/j.cnki.dxdl.2011.03.004.
[3] 钟科星, 丁乐声, 张聪, 等. 基于神经网络的风电海缆弯曲限制器优化设计 [J]. 海洋工程装备与技术, 2024, 11(1): 70–76.
DOI: 10.12087/oeet.2095-7297.2024.01.12.
ZHONG K X, DING L S, ZHANG C, et al. Optimization design of wind power submarine cable bending limiter based on
neural network [J]. Ocean Engineering Equipment and Technology, 2024, 11(1): 70–76. DOI: 10.12087/oeet.2095-7297.
2024.01.12.
[4] 林峰, 李斯魏, 薛驰, 等. 海上风电海缆风机端弯曲保护装置及安装技术研究 [J]. 机电工程技术, 2024, 53(9): 12–16, 46.
DOI: 10.3969/j.issn.1009-9492.2024.09.003.
LIN F, LI S W, XUE C, et al. Research on bending protection device and installation technology of offshore wind power
submarine cable fan end [J]. Mechanical & Electrical Engineering Technology, 2024, 53(9): 12–16, 46. DOI: 10.3969/j.issn.
1009-9492.2024.09.003.
[5] 董吴磊, 杨华勇, 郭朝阳, 等. 基于材料非线性的两种海缆弯曲限制器的有限元分析与试验验证 [J]. 海洋技术学报, 2019,
38(6): 89–94.
DONG W L, YANG H Y, GUO C Y, et al. Finite element analysis and experimental verification of two kinds of submarine
cable bending limiters based on material nonlinearity [J]. Ocean Technology, 2019, 38(6): 89–94.
[6] 邓俊儒, 张青云. 基于多种桩型的海缆保护系统研究 [J]. 南方能源建设, 2020, 7(2): 91–97. DOI: 10.16516/j.gedi.
issn2095-8676.2020.02.014.
DENG J R, ZHANG Q Y. Research on submarine cable protection system based on multiple pile types [J]. Southern Energy
Construction, 2020, 7(2): 91–97. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.014.
[7] 周忠旭. 固定式风电平台下的悬挂海缆保护设计与分析 [D]. 辽宁, 大连: 大连理工大学, 2020: 23–25.
ZHOU Z X. Design and analysis of suspended submarine cable protection under fixed wind power platform [D]. Dalian,
Liaoning, China: Dalian University of Technology, 2020: 23–25.
[8] RUMIANEK P, DOBOSZ T, NOWAK R, et al. Static mechanical properties of expanded polypropylene crushable foam [J].
Materials, 2021, 14(2): 249–264. DOI: 10.3390/ma14020249.
[9] CHEN H, SUN D, GAO L, et al. Mechanical behavior of closed-cell ethylene-vinyl acetate foam under compression [J].
Polymers, 2024, 16(1): 34. DOI: 10.3390/polym16010034.
[10] LIU D S, CHEN Z H, TSAI C Y, et al. Compressive mechanical property analysis of EVA foam: its buffering effects at
different impact velocities [J]. Journal of Mechanics, 2017, 33(4): 435–441. DOI: 10.1017/jmech.2016.98.
[11] LAM C, KWAN J S H, SU Y, et al. Performance of ethylene-vinyl acetate foam as cushioning material for rigid debris-
resisting barriers [J]. Landslides, 2018, 15: 1779–1786. DOI: 10.1007/s10346-018-0987-z.
[12] AVALLE M, BELINGARDI G, MONTANINI R. Characterization of polymeric structural foams under compressive impact
loading by means of energy-absorption diagram [J]. International Journal of Impact Engineering, 2001, 25(5): 455–472. DOI:
10.1016/S0734-743X(00)00060-9.
[13] 孙德强, 高璐璐, 刘晓晨, 等. 闭孔 EVA 泡沫类静态缓冲性能的研究 [J]. 包装工程, 2023, 44(21): 62–69. DOI: 10.19554/
j.cnki.1001-3563.2023.21.008.
SUN D Q, GAO L L, LIU X C, et al. Study on static cushioning properties of closed-cell EVA foam [J]. Packaging
125102-15

