Page 142 - 《爆炸与冲击》2025年第9期
P. 142
第 45 卷 焦俊杰,等: 基于水下爆炸的爆轰产物JWL状态方程确定方法研究 第 9 期
(3) 利用测定的 JWL 状态方程参数对水下爆炸的气泡动力学过程进行了计算,计算结果与试验结果
吻合较好,尤其是在低压阶段,证明了该方法在测定水下爆炸炸药爆轰产物状态方程的适用性和准确性。
参考文献:
[1] 陈朗, 冯长根, 黄毅民. 含铝炸药圆筒试验及爆轰产物 JWL 状态方程研究 [J]. 火炸药学报, 2001, 24(3): 13–15. DOI:
10.3969/j.issn.1007-7812.2001.03.005.
CHEN L, FENG C G, HUANG Y M. The cylinder test and JWL equation of state detontion product of aluminized explosives [J].
Chinese Journal of Explosives & Propellants, 2001, 24(3): 13–15. DOI: 10.3969/j.issn.1007-7812.2001.03.005.
[2] 裴红波, 钟斌, 李星瀚, 等. RDX 基含铝炸药圆筒试验及状态方程研究 [J]. 火炸药学报, 2019, 42(4): 403–409. DOI:
10.14077/j.issn.1007-7812.2019.04.015.
PEI H B, ZHONG B, LI X H, et al. Study on the cylinder tests and equation of state in RDX based aluminized explosives [J].
Chinese Journal of Explosives & Propellants, 2019, 42(4): 403–409. DOI: 10.14077/j.issn.1007-7812.2019.04.015.
[3] 沈飞, 王辉, 袁建飞, 等. RDX 基含铝炸药不同尺寸的圆筒试验及数值模拟 [J]. 含能材料, 2013, 21(6): 777–780. DOI:
10.3969/j.issn.1006-9941.2013.06.017.
SHEN F, WANG H, YUAN J F, et al. Different diameter cylinder tests and numerical simulation of RDX based aluminized
explosive [J]. Chinese Journal of Energetic Materials, 2013, 21(6): 777–780. DOI: 10.3969/j.issn.1006-9941.2013.06.017.
[4] 韩勇, 黄辉, 黄毅民, 等. 含铝炸药圆筒试验与数值模拟 [J]. 火炸药学报, 2009, 32(4): 14–17. DOI: 10.3969/j.issn.1007-
7812.2009.04.004.
HAN Y, HUANG H, HUANG Y M, et al. Cylinder test of aluminized explosives and its numerical simulation [J]. Chinese
Journal of Explosives & Propellants, 2009, 32(4): 14–17. DOI: 10.3969/j.issn.1007-7812.2009.04.004.
[5] 杨晨琛, 李晓杰, 闫鸿浩, 等. 爆轰产物状态方程的水下爆炸反演理论研究 [J]. 爆炸与冲击, 2019, 39(9): 092201. DOI:
10.11883/bzycj-2018-0210.
YANG C C, LI X J, YAN H H, et al. An inverse method for the equation of state of detonation products from underwater
explosion tests [J]. Explosion and Shock Waves, 2019, 39(9): 092201. DOI: 10.11883/bzycj-2018-0210.
[6] HOLTON W C. The detonation pressures in explosives as measured by transmitted shocks in water: NAVORD Report 3968 [R].
White Oak: U. S. Naval Ordnance Laboratory, 1954.
[7] COOK M A, PACK D H, MCEWAN W S. Promotion of shock initiation of detonation by metallic surfaces [J]. Transactions
of the Faraday Society, 1960, 56: 1028–1038. DOI: 10.1039/tf9605601028.
[8] RIGDON J K. Explosive performance: SANL-712-004 [R]. Amarillo: Mason and Hanger-Silas Mason Company Incorporated,
1969. DOI: 10.2172/532483.
[9] 杨凯, 孔军利, 沈飞, 等. 水下滑移爆轰试验确定 JWL 状态方程参数 [J]. 火炸药学报, 2013, 36(3): 62–64. DOI:
10.3969/j.issn.1007-7812.2013.03.015.
YANG K, KONG J L, SHEN F, et al. Determining the parameters of JWL EOS by underwater sliding detonation test [J].
Chinese Journal of Explosives & Propellants, 2013, 36(3): 62–64. DOI: 10.3969/j.issn.1007-7812.2013.03.015.
[10] 沈飞, 王辉, 袁建飞, 等. 含铝炸药水下滑移爆轰实验研究 [J]. 实验力学, 2014, 29(5): 641–646. DOI: 10.7520/1001-4888-
13-202.
SHEN F, WANG H, YUAN J F, et al. Experimental study of underwater sliding detonation of aluminized explosives [J].
Journal of Experimental Mechanics, 2014, 29(5): 641–646. DOI: 10.7520/1001-4888-13-202.
[11] 魏贤凤, 龙新平, 韩勇. PBX-01 炸药水中爆轰产物状态方程研究 [J]. 爆炸与冲击, 2015, 35(4): 599–602. DOI:
10.11883/1001-1455(2015)04-0599-04.
WEI X F, LONG X P, HAN Y. Studies on the state equation of the underwater detonation products for PBX-01 explosive [J].
Explosion and Shock Waves, 2015, 35(4): 599–602. DOI: 10.11883/1001-1455(2015)04-0599-04.
[12] 李科斌, 董新龙, 李晓杰, 等. 水下爆炸实验法在工业炸药 JWL 状态方程测定中的应用研究 [J]. 兵工学报, 2020, 41(3):
488–494. DOI: 10.3969/j.issn.1000-1093.2020.03.009.
LI K B, DONG X L, LI X J, et al. Research on parameters determination of JWL EOS for commercial explosives based on
underwater explosion test [J]. Acta Armamentarii, 2020, 41(3): 488–494. DOI: 10.3969/j.issn.1000-1093.2020.03.009.
[13] 林谋金, 马宏昊, 沈兆武, 等. 铝纤维对黑索今水下爆炸性能的影响 [J]. 爆炸与冲击, 2014, 34(3): 379–384. DOI:
093401-8