Page 59 - 《爆炸与冲击》2025年第5期
P. 59

第 45 卷             黄晨瑞,等: 高速冲击下混凝土动力学性质和动态温度研究                                  第 5 期

               [25]   YIN S, LI Z H, SONG D Z, et al. Experimental study on the infrared precursor characteristics of gas-bearing coal failure under
                    loading  [J].  International  Journal  of  Mining  Science  and  Technology,  2021,  31(5):  901–912.  DOI:  10.1016/j.ijmst.
                    2021.07.003.
               [26]   GAO Q Q, MA L Q, LIU W, et al. Research on the denoising method of infrared thermogram during rock fracture [J]. Infrared
                    Physics & Technology, 2023, 131: 104651. DOI: 10.1016/j.infrared.2023.104651.
               [27]   ICHI E, DORAFSHAN S. Effectiveness of infrared thermography for delamination detection in reinforced concrete bridge
                    decks [J]. Automation in Construction, 2022, 142: 104523. DOI: 10.1016/j.autcon.2022.104523.
               [28]   YIN S, LI Z H, WANG E Y, et al. The infrared thermal effect of coal failure with different impact types and its relationship
                    with bursting liability [J]. Infrared Physics & Technology, 2024, 138: 105263. DOI: 10.1016/j.infrared.2024.105263.
               [29]   吴立新, 钟声, 吴育华, 等. 落球撞击岩石热红外辐射温度的时延特征 [J]. 中国矿业大学学报, 2005, 34(5): 557–563. DOI:
                    10.3321/j.issn:1000-1964.2005.05.004.
                    WU L X, ZHONG S, WU Y H, et al. Time dependent features of thermal infrared radiation temperature of rock impacted by
                    free-falling  steel  ball  [J].  Journal  of  China  University  of  Mining  &  Technology,  2005,  34(5):  557–563.  DOI:  10.3321/
                    j.issn:1000-1964.2005.05.004.
               [30]   吴立新, 吴育华, 钟声, 等. 岩石撞击的热红外成像探测研究进展与方向 [J]. 岩石力学与工程学报, 2006, 25(11):
                    2180–2186. DOI: 10.3321/j.issn:1000-6915.2006.11.003.
                    WU L X, WU Y H, ZHONG S, et al. Research progresses and directions of detection on rock impaction with thermal infrared
                    imaging  [J].  Chinese  Journal  of  Rock  Mechanics  and  Engineering,  2006,  25(11):  2180–2186.  DOI:  10.3321/j.issn:1000-
                    6915.2006.11.003.
               [31]   刘善军, 吴立新, 张艳博. 岩石破裂前红外热像的时空演化特征 [J]. 东北大学学报              (自然科学版), 2009, 30(7): 1034–1038.
                    DOI: 10.3969/j.issn.1005-3026.2009.07.029.
                    LIU  S  J,  WU  L  X,  ZHANG  Y  B.  Temporal-spatial  evolution  features  of  infrared  thermal  images  before  rock  failure  [J].
                    Journal of Northeastern University (Natural Science), 2009, 30(7): 1034–1038. DOI: 10.3969/j.issn.1005-3026.2009.07.029.
               [32]   邓志毅, 张东胜, 安里千. 热探测法监测岩石应力变化的实验研究 [J]. 中国矿业大学学报, 2006, 35(5): 623–627. DOI:
                    10.3321/j.issn:1000-1964.2006.05.012.
                    DENG Z Y, ZHANG D S, AN L Q. Experimental of monitoring stress variation of rock using a thermal detection [J]. Journal
                    of China University of Mining & Technology, 2006, 35(5): 623–627. DOI: 10.3321/j.issn:1000-1964.2006.05.012.
               [33]   SUN X M, XU H C, HE M C, et al. Experimental investigation of the occurrence of rockburst in a rock specimen through
                    infrared thermography and acoustic emission [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93:
                    250–259. DOI: 10.1016/j.ijrmms.2017.02.005.
               [34]   LOU  Q,  HE  X  Q.  Experimental  study  on  infrared  radiation  temperature  field  of  concrete  under  uniaxial  compression  [J].
                    Infrared Physics & Technology, 2018, 90: 20–30. DOI: 10.1016/j.infrared.2018.01.033.
               [35]   周子龙, 刘洋, 蔡鑫, 等. 冲击荷载下砂岩的红外辐射特性 [J]. 中南大学学报           (自然科学版), 2022, 53(7): 2555–2562. DOI:
                    10.11817/j.issn.1672-7207.2022.07.015.
                    ZHOU Z L, LIU Y, CAI X, et al. Infrared radiation characteristics of sandstone exposed to impact loading [J]. Journal of
                    Central South University (Science and Technology), 2022, 53(7): 2555–2562. DOI: 10.11817/j.issn.1672-7207.2022.07.015.
               [36]   TIAN H, LI Z H, YIN S, et al. Research on infrared radiation response and energy dissipation characteristics of sandstone
                    crushing under impact load [J]. Engineering Geology, 2023, 322: 107171. DOI: 10.1016/j.enggeo.2023.107171.
               [37]   CHEN  H  Y,  CHEN  C.  Determining  the  emissivity  and  temperature  of  building  materials  by  infrared  thermometer  [J].
                    Construction and Building Materials, 2016, 126: 130–137. DOI: 10.1016/j.conbuildmat.2016.09.027.
               [38]   PEDRAM  M,  TAYLOR  S,  HAMILL  G,  et  al.  Experimental  evaluation  of  heat  transition  mechanism  in  concrete  with
                    subsurface  defects  using  infrared  thermography  [J].  Construction  and  Building  Materials,  2022,  360:  129531.  DOI:
                    10.1016/j.conbuildmat.2022.129531.
               [39]   HODOWANY J. On the conversion of plastic work into heat [M]. California: California Institute of Technology, 1997: 44–49.
               [40]   MASON J J, ROSAKIS A J, RAVICHANDRAN G. On the strain and strain rate dependence of the fraction of plastic work
                    converted to heat: an experimental study using high speed infrared detectors and the Kolsky bar [J]. Mechanics of Materials,
                    1994, 17(2/3): 135–145. DOI: 10.1016/0167-6636(94)90054-X.
               [41]   POTDAR  Y  K,  ZEHNDER  A  T.  Measurements  and  simulations  of  temperature  and  deformation  fields  in  transient  metal


                                                         053101-17
   54   55   56   57   58   59   60   61   62   63   64