Page 58 - 《爆炸与冲击》2025年第5期
P. 58

第 45 卷             黄晨瑞,等: 高速冲击下混凝土动力学性质和动态温度研究                                  第 5 期

               [9]   KODUR V K R, CHENG F P, WANG T C, et al. Effect of strength and fiber reinforcement on fire resistance of high-strength
                    concrete columns [J]. Journal of Structural Engineering, 2003, 129(2): 253–259. DOI: 10.1061/(ASCE)0733-9445(2003)129:
                    2(253).
               [10]   XU L H, DENG F Q, CHI Y. Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber
                    and cement paste [J]. Construction and Building Materials, 2017, 145: 619–638. DOI: 10.1016/j.conbuildmat.2017.04.035.
               [11]   徐礼华, 邓方茜, 徐浩然, 等. 钢-聚丙烯混杂纤维混凝土柱抗震性能试验研究 [J]. 土木工程学报, 2016, 49(1): 3–13. DOI:
                    10.15951/j.tmgcxb.2016.01.002.
                    XU L H, DENG F Q, XU H R, et al. On seismic behavior of steel-polypropylene hybrid fiber reinforced concrete columns [J].
                    China Civil Engineering Journal, 2016, 49(1): 3–13. DOI: 10.15951/j.tmgcxb.2016.01.002.
               [12]   王秋维, 梁林, 史庆轩. 混杂钢纤维超高性能混凝土轴拉力学性能及本构模型 [J]. 复合材料学报, 2024, 41(1): 383–394.
                    DOI: 10.13801/j.cnki.fhclxb.20230529.002.
                    WANG Q W, LIANG L, SHI Q X. Mechanical properties and constitutive model of ultra-high performance concrete with
                    hybrid  steel  fiber  under  axial  tension  [J].  Acta  Materiae  Compositae  Sinica,  2024,  41(1):  383–394.  DOI:  10.13801/
                    j.cnki.fhclxb.20230529.002.
               [13]   WANG Z H, BAI E L, LIANG L, et al. Effect of ceramic fiber on mechanical properties of concrete with different strength
                    grades and its strengthening and toughening behaviors under impact load [J]. Construction and Building Materials, 2023, 402:
                    132993. DOI: 10.1016/j.conbuildmat.2023.132993.
               [14]   张 超 峰 ,  管 仲 国 .  混 凝 土 结 构 冲 击 的 研 究 现 状  [C]//第 五 届 土 木 工 程 国 际 会 议 论 文 集 .  南 京 ,  2022.  DOI:
                    10.11648/j.sd.20210904.21.
                    ZHANG  C  F,  GUAN  Z  G.  Research  status  of  impact  on  concrete  structures  [C]//5th  International  Conference  on  Civil
                    Engineering. Nanjing, 2022. DOI: 10.11648/j.sd.20210904.21.
               [15]   LI B, CHI Y, XU L H, et al. Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced
                    concrete [J]. Construction and Building Materials, 2018, 191: 80–94. DOI: 10.1016/j.conbuildmat.2018.09.202.
               [16]   ZHOU X, XIE Y J, LONG G C, et al. Effect of surface characteristics of aggregates on the compressive damage of high-
                    strength concrete based on 3D discrete element method [J]. Construction and Building Materials, 2021, 301: 124101. DOI:
                    10.1016/j.conbuildmat.2021.124101.
               [17]   YU Y, ZHENG Y, ZHAO X Y. Mesoscale modeling of recycled aggregate concrete under uniaxial compression and tension
                    using  discrete  element  method  [J].  Construction  and  Building  Materials,  2021,  268:  121116.  DOI:  10.1016/j.conbuildmat.
                    2020.121116.
               [18]   CAO K W, DONG F R, YU Y H, et al. Infrared radiation response mechanism of sandstone during loading and fracture
                    process [J]. Theoretical and Applied Fracture Mechanics, 2023, 126: 103974. DOI: 10.1016/j.tafmec.2023.103974.
               [19]   LI X L, LI Z H, YIN S, et al. Experimental study on infrared thermal response characteristics of water-bearing concrete under
                    drop hammer impact [J]. Infrared Physics & Technology, 2023, 135: 104899. DOI: 10.1016/j.infrared.2023.104899.
               [20]   吴立新, 李国华, 吴焕萍. 热红外成像用于固体撞击瞬态过程监测的实验探索 [J]. 科学通报, 2001, 46(2): 172–176. DOI:
                    10.1360/csb2001-46-2-172.
                    WU L X, WU H P, LI G H. Experimental exploration to thermal infrared imaging for detecting the transient process of solid
                    impact [J]. Chinese Scientific Bulletin, 2001, 46(10): 872–877. DOI: 10.1007/BF02900442.
               [21]   张宗贤, 喻勇, 赵清. 岩石断裂韧度的温度效应 [J]. 中国有色金属学报, 1994, 4(2): 7–11. DOI: 10.19476/j.ysxb.1004.
                    0609.1994.02.003.
               [22]   张志镇, 高峰, 刘治军. 温度影响下花岗岩冲击倾向及其微细观机制研究 [J]. 岩石力学与工程学报, 2010, 29(8):
                    1591–1602.
                    ZHANG  Z  Z,  GAO  F,  LIU  Z  J.  Research  on  rockburst  proneness  and  its  microcosmic  mechanism  of  granite  considering
                    temperature effect [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1591–1602.
               [23]   ALGOURDIN  N,  PLIYA  P,  BEAUCOUR  A  L,  et  al.  Effect  of  fine  and  coarse  recycled  aggregates  on  high-temperature
                    behaviour  and  residual  properties  of  concrete  [J].  Construction  and  Building  Materials,  2022,  341:  127847.  DOI:
                    10.1016/j.conbuildmat.2022.127847.
               [24]   HIASA S, BIRGUL R, NECATI CATBAS F. A data processing methodology for infrared thermography images of concrete
                    bridges [J]. Computers & Structures, 2017, 190: 205–218. DOI: 10.1016/j.compstruc.2017.05.011.


                                                         053101-16
   53   54   55   56   57   58   59   60   61   62   63