Page 58 - 《爆炸与冲击》2025年第5期
P. 58
第 45 卷 黄晨瑞,等: 高速冲击下混凝土动力学性质和动态温度研究 第 5 期
[9] KODUR V K R, CHENG F P, WANG T C, et al. Effect of strength and fiber reinforcement on fire resistance of high-strength
concrete columns [J]. Journal of Structural Engineering, 2003, 129(2): 253–259. DOI: 10.1061/(ASCE)0733-9445(2003)129:
2(253).
[10] XU L H, DENG F Q, CHI Y. Nano-mechanical behavior of the interfacial transition zone between steel-polypropylene fiber
and cement paste [J]. Construction and Building Materials, 2017, 145: 619–638. DOI: 10.1016/j.conbuildmat.2017.04.035.
[11] 徐礼华, 邓方茜, 徐浩然, 等. 钢-聚丙烯混杂纤维混凝土柱抗震性能试验研究 [J]. 土木工程学报, 2016, 49(1): 3–13. DOI:
10.15951/j.tmgcxb.2016.01.002.
XU L H, DENG F Q, XU H R, et al. On seismic behavior of steel-polypropylene hybrid fiber reinforced concrete columns [J].
China Civil Engineering Journal, 2016, 49(1): 3–13. DOI: 10.15951/j.tmgcxb.2016.01.002.
[12] 王秋维, 梁林, 史庆轩. 混杂钢纤维超高性能混凝土轴拉力学性能及本构模型 [J]. 复合材料学报, 2024, 41(1): 383–394.
DOI: 10.13801/j.cnki.fhclxb.20230529.002.
WANG Q W, LIANG L, SHI Q X. Mechanical properties and constitutive model of ultra-high performance concrete with
hybrid steel fiber under axial tension [J]. Acta Materiae Compositae Sinica, 2024, 41(1): 383–394. DOI: 10.13801/
j.cnki.fhclxb.20230529.002.
[13] WANG Z H, BAI E L, LIANG L, et al. Effect of ceramic fiber on mechanical properties of concrete with different strength
grades and its strengthening and toughening behaviors under impact load [J]. Construction and Building Materials, 2023, 402:
132993. DOI: 10.1016/j.conbuildmat.2023.132993.
[14] 张 超 峰 , 管 仲 国 . 混 凝 土 结 构 冲 击 的 研 究 现 状 [C]//第 五 届 土 木 工 程 国 际 会 议 论 文 集 . 南 京 , 2022. DOI:
10.11648/j.sd.20210904.21.
ZHANG C F, GUAN Z G. Research status of impact on concrete structures [C]//5th International Conference on Civil
Engineering. Nanjing, 2022. DOI: 10.11648/j.sd.20210904.21.
[15] LI B, CHI Y, XU L H, et al. Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced
concrete [J]. Construction and Building Materials, 2018, 191: 80–94. DOI: 10.1016/j.conbuildmat.2018.09.202.
[16] ZHOU X, XIE Y J, LONG G C, et al. Effect of surface characteristics of aggregates on the compressive damage of high-
strength concrete based on 3D discrete element method [J]. Construction and Building Materials, 2021, 301: 124101. DOI:
10.1016/j.conbuildmat.2021.124101.
[17] YU Y, ZHENG Y, ZHAO X Y. Mesoscale modeling of recycled aggregate concrete under uniaxial compression and tension
using discrete element method [J]. Construction and Building Materials, 2021, 268: 121116. DOI: 10.1016/j.conbuildmat.
2020.121116.
[18] CAO K W, DONG F R, YU Y H, et al. Infrared radiation response mechanism of sandstone during loading and fracture
process [J]. Theoretical and Applied Fracture Mechanics, 2023, 126: 103974. DOI: 10.1016/j.tafmec.2023.103974.
[19] LI X L, LI Z H, YIN S, et al. Experimental study on infrared thermal response characteristics of water-bearing concrete under
drop hammer impact [J]. Infrared Physics & Technology, 2023, 135: 104899. DOI: 10.1016/j.infrared.2023.104899.
[20] 吴立新, 李国华, 吴焕萍. 热红外成像用于固体撞击瞬态过程监测的实验探索 [J]. 科学通报, 2001, 46(2): 172–176. DOI:
10.1360/csb2001-46-2-172.
WU L X, WU H P, LI G H. Experimental exploration to thermal infrared imaging for detecting the transient process of solid
impact [J]. Chinese Scientific Bulletin, 2001, 46(10): 872–877. DOI: 10.1007/BF02900442.
[21] 张宗贤, 喻勇, 赵清. 岩石断裂韧度的温度效应 [J]. 中国有色金属学报, 1994, 4(2): 7–11. DOI: 10.19476/j.ysxb.1004.
0609.1994.02.003.
[22] 张志镇, 高峰, 刘治军. 温度影响下花岗岩冲击倾向及其微细观机制研究 [J]. 岩石力学与工程学报, 2010, 29(8):
1591–1602.
ZHANG Z Z, GAO F, LIU Z J. Research on rockburst proneness and its microcosmic mechanism of granite considering
temperature effect [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1591–1602.
[23] ALGOURDIN N, PLIYA P, BEAUCOUR A L, et al. Effect of fine and coarse recycled aggregates on high-temperature
behaviour and residual properties of concrete [J]. Construction and Building Materials, 2022, 341: 127847. DOI:
10.1016/j.conbuildmat.2022.127847.
[24] HIASA S, BIRGUL R, NECATI CATBAS F. A data processing methodology for infrared thermography images of concrete
bridges [J]. Computers & Structures, 2017, 190: 205–218. DOI: 10.1016/j.compstruc.2017.05.011.
053101-16