Page 262 - 《软件学报》2020年第9期
P. 262

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
         Journal of Software,2020,31(9):2883−2902 [doi: 10.13328/j.cnki.jos.006083]   http://www.jos.org.cn
         ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563


                                                       ∗
         弱监督场景下的行人重识别研究综述

         祁   磊,   于沛泽,   高   阳


         (计算机软件新技术国家重点实验室(南京大学),江苏  南京  210023)
         通讯作者:  高阳, E-mail: gaoy@nju.edu.cn

         摘   要:  近年来,随着智能监控领域的不断发展,行人重识别问题逐渐受到学术界和工业界的广泛关注,其主要研
         究将不同摄像头下相同身份的行人图像进行关联.当前,大部分研究工作关注在有监督场景下,即给定的训练数据都
         存在标记信息,然而考虑到数据标注工作的高成本,这在现实应用中往往是难以拓展的.关注于弱监督场景下的行人
         重识别算法,包括无监督场景和半监督场景,并且对当前先进的方法进行了分类和描述.对于无监督场景的行人重识
         别算法,根据其技术类型划分为 5 类,分别为基于伪标记的方法、基于图像生成的方法、基于实例分类的方法、基
         于领域自适应的方法和其他方法;对于半监督场景的行人重识别方法,根据其场景类型划分为 4 类,分别为少量的人
         有标记的场景、每一个人有少量标记的场景、基于 tracklet 的学习的场景和摄像头内有标记但摄像头间无标记的
         场景.最后,对当前行人重识别的相关数据集进行了整理,并对现有的弱监督方法的实验结果进行分析与总结.
         关键词:  行人重识别;半监督学习;无监督学习;深度学习;人工智能
         中图法分类号: TP18

         中文引用格式:  祁磊,于沛泽,高阳.弱监督场景下的行人重识别研究综述.软件学报,2020,31(9):2883−2902. http://www.jos.org.
         cn/1000-9825/6083.htm
         英文引用格式: Qi L, Yu PZ, Gao Y. Research on weak-supervised  person re-identification. Ruan  Jian Xue  Bao/Journal  of
         Software, 2020,31(9):2883−2902 (in Chinese). http://www.jos.org.cn/1000-9825/6083.htm

         Research on Weak-supervised Person Re-identification

         QI Lei,   YU Pei-Ze,  GAO Yang
         (State Key Laboratory for Novel Software Technology (Nanjing University), Nanjing 210023, China)
         Abstract:    Recently, with the development of the intelligent surveillance, person re-identification (Re-ID) has attracted lots of attention
         in the academic and industrial communities, which aims to associate person images of the same identity under different non-overlapping
         cameras. Most of  the  current research  works focus on the supervised  case  where  all given training samples  have label  information.
         Considering  the high  cost of data labeling, these  methods designed for  the supervised setting have poor generalization in practical
         applications. This study focuses on person re-identification algorithms under the weakly supervised case including the unsupervised case
         and the semi-supervised case and classify and describe several state-of-the-art methods. In the unsupervised setting, these methods are
         divided into five categories from different technology perspectives, which include the methods based on pseudo-label, image generation,
         instance  classification, domain  adaptation,  and others.  In the semi-supervised setting, these  methods  are divided into four  categories
         according to the case discrepancy, which are the case where a small number of persons are labeled, the case where there are few labeled
         images for each person, the case based on tracklet learning, and the case where there are the intra-camera labels but no inter-camera label
         information. Finally, several benchmark person re-identification datasets  are summarized and some  experimental results of these
         weak-supervised person re-Identification algorithms are analyzed.
         Key words:    person re-identification; semi-supervised learning; unsupervised learning; deep learning; artificial intelligence

             近年来,随着社会安防意识增强和科学技术的进步,城市中监控摄像头的数量越来越多.这些监控系统往往
         部署在写字楼、校园、商场、大大小小的街道和社区等各种各样的场所,在安防领域起到了重要的作用.例如:

              收稿时间:   2020-01-18;  修改时间: 2020-03-09;  采用时间: 2020-05-09; jos 在线出版时间: 2020-05-26
   257   258   259   260   261   262   263   264   265   266   267