Page 43 - 《软件学报》2020年第11期
P. 43

王占占  等:基于择优协作策略的 PES 算法在整数规划问题上的应用                                              3359


                   3500
                                         最佳值
                                         平均值
                   3000
                   2500
                   2000
                   1500
                   1000
                   500
                     0   200  400  600  800  1000
                               迭代次数
                               P 6                                    P 7                                     P 8
                                       Fig.5    Evolution curves of various problems (Continued)
                                                 图 5   各问题的进化曲线(续)
                    在图 5 中可以看到,大多数问题在 200 代便能找到最佳函数值,并且在前几代进化速度非常快.这是种群之
                 间的分工合作的结果,个体的更新受到个体极值与全局极值的指引,在各自的职能范围内完成寻优过程.
                    由以上各分析可知,基于择优策略的 PES 算法继承了标准 PES 算法善于寻找全局最优的特点,并且通过运
                 用择优协作的策略,提高了算法的收敛速度;相对所对比的算法,本文算法能够很好地求解具有多峰特点的整数规
                 划问题.

                 5    总结与展望

                    本文深入分析了标准的 PES 算法的机理,针对 PES 算法的群内协作的不足,提出了基于择优策略的 PES 算
                 法,并将它应用到求解整数规划问题上.通过数值仿真实验,说明了所提出的算法在求解具有多峰特点的整数规
                 划问题上有着良好的性能.除了本文对 PES 算法的拓展之外,还有很多方面值得探讨,如在理论上对 PES 算法的
                 性能加以分析;给出算法的收敛性、稳定性、全局最优性的理论支持.这是下一步的重点研究工作.


                 References:
                 [1]    Moeini A. Identification of unidentified equality constraints for integer programming problems. European Journal of Operational
                     Research, 2017,260(2):460−467. [doi: 10.1016/j.ejor.2016.12.040]
                 [2]    Huang ZC, Wu FC, Hu  XL.  An  evolutionary  algorithm to integer programming problem  based on pheromone.  Computer
                     Application Research, 2001,18(7):27−29 (in Chinese with English abstract). [doi: 10.3969/j.issn.1001-3695.2001.07.010]
                 [3]    Li  T,  Wang  CF,  Wang WB, Su WL.  A bionic global optimization  algorithm for solving integer programming—Plant growth
                     simulation algorithm.  System Engineering Theory and Practice,  2015,25(1):76−85 (in Chinese with English abstract).  [doi:  10.
                     3321/j.issn:1000-6788.2005.01.012]
                 [4]    Yang F, Wang PX, Zhang YZ, Zheng LT, Lu JC. Survey of swarm intelligence optimization algorithms. In: Proc. of the 2017 IEEE
                     Int’l Conf. on Unmanned Systems (ICUS). IEEE, 2017. 558−563. [doi: 10.1109/ICUS.2017.8278405]
                 [5]    Chiang  HD, Wang  T.  A novel  trust-tech guided branch-and-bound  method for nonlinear integer programming. IEEE  Trans. on
                     Systems Man Cybernetics-Systems, 2015,45(10):1361−1372. [doi: 10.1109/TSMC.2015.2399475]
                 [6]    Li MM, Zhang LS,  Liang YM. A filled  function method with  one  parameter  for  integer  programming. Chinese  Journal  of
                     Computers, 2008,12(2):73−83. [doi: 10.1007/BF02842060]
                 [7]    Yang CR, Qian Q,  Wang F, Sun  MH. Application of improved adaptive  genetic algorithm  in function  optimization. Computer
                     Application and Research, 2018,35(4):1042−1045 (in Chinese with English abstract). [doi: 10.3321/j.issn:1000-6788.2005.01.012]
                 [8]    Bera A, Sychel D. Hybrids of two-subpopulation PSO algorithm with local search methods for continuous optimization. Artificial
                     Intelligence and Soft Computing, 2015,9119:307−318. [doi: 10.1007/978-3-319-19324-3_28]
                 [9]    Zhao YP, Dong ZZ, Li Z. Improved ant colony algorithm for integer programming. Journal of Xi’an Petroleum University (Natural
                     Science Edition), 2013,28(3):100−103 (in Chinese with English abstract). [doi: 10.3969/j.issn.1673-064X.2013.03.022]
   38   39   40   41   42   43   44   45   46   47   48